Instruction Manual
for
Model TC-48-20
and
Model TC-48-20 OEM
Thermoelectric Cooler
Temperature Controller

May 1, 2012
Drawing #4746 Rev. D

TE TECHNOLOGY, INC.
1590 Keane Drive
Traverse City, MI 49696-8257
www.tetech.com

Phone: (231) 929-3966
Fax: (231) 929-4163
e-mail: cool@tetech.com

All Materials Copyright ©2012 TE Technology, Inc.
General Safety Warnings

This manual is available in English only. It must be read and followed carefully before installation and operation. All warnings in this Operation Manual apply to both the TC-48-20 and TC-48-20 OEM versions of the controller. Where “TC-48-20” is referenced, it is used generically and interchangeably for both the TC-48-20 and the TC-48-20 OEM versions of the controller, except where otherwise specifically noted.

THE LATEST REVISION OF THIS MANUAL IS AVAILABLE AT www.tetech.com. Verify that you are using the latest revision available.

Do not use in an explosive or potentially explosive environment.

The TC-48-20 should not be used as a toy, or serious injury could result. The TC-48-20 should only be used for its intended purpose of providing temperature control of TE Technology’s thermoelectric devices only. The controller is intended for light industrial, laboratory, or similar use. It is not for household use or medical use.

Do not use if the controller has been damaged.

Only qualified technicians should install and operate this controller with the appropriate personal protective equipment.

Do not use the TC-48-20 to control capacitive or inductive loads or the controller could be damaged and/or overheat. Examples of capacitive or inductive loads include but are not limited to: motors, fans, filters, and solenoids.

Do not allow the electrical connections or components on the printed circuit board, including those on the reverse side of the JP3, JP4 and JP5 connectors, to touch any electrically conductive surfaces.

Do not operate in an environment where the controller could come in contact with condensation, water, metal shavings, dirt or other contaminants, or electrically conductive materials.

Use ESD (Electro Static Discharge) protection when installing the controller or coming in contact with electrical connections or components on the controller.

Do not touch any of the electrical connections or components of the TC-48-20 while the controller is energized. Doing so can disrupt the function of the controller.

The printed circuit board underneath JP4 and exposed components on the printed circuit board could exceed 70 °C under normal operation. Use caution! Protect against accidental contact with hot surfaces.

Improper tuning of this temperature controller can lead to overheating of the load (e.g. cooling assembly, heater, etcetera) and other related equipment.

Use protection devices to prevent hazardous conditions and/or damage to equipment.

Each power input that is used must be fused separately. Alternately, a power supply with integral over current protection can be used if it is appropriately sized for protecting the controller/TE device.

JP4 Pin 1 (+ power in) and JP4 Pin 3 (+ load output) are connected to each other inside the controller. When JP4 Pin 1 is energized a voltage will be present on JP4 Pin 3, even if the output of the controller is off.
The TC-48-20 OEM is intended to be used with, or incorporated into, other machinery made by TE Technology, Inc. and must not be put into service until the relevant machinery into which it is to be incorporated into has been declared in conformity with the essential requirements of the Machinery Directive 2006/42/EC.

For more information regarding protection devices read TE Technology’s Thermoelectric Cooling Assembly (TCA) Instruction manual which is available for download from TE Technology's website at www.tetech.com. The terms and provisions relating to protection devices as provided in the TCA Instruction manual are hereby incorporated by reference. A copy of the TCA Instruction manual can also be sent via regular mail upon request.

TE Technology, Inc. does not make any warranty, expressed or implied, that the use or operation of the equipment will be functional or effective if the equipment is not installed and used in accordance with this manual.

TE Technology, Inc. shall not be liable, and Purchaser shall defend, hold harmless, and indemnify TE Technology, Inc. from and against, any losses, costs, expenses (including reasonable attorneys’ fees), injuries, liabilities or damages of any kind or nature whatsoever, arising out of the use or inability to use this TE Technology, Inc. product, from the omission or failure to use protection devices, or from failure to comply with this manual. This provision is in addition to any other indemnification provisions which are a part of the Purchase Order or contract with Purchaser.
Table of Contents

License Agreement ... 5

Features ... 8

Operating Instructions .. 13

1.0 Setup .. 13

2.0 Display and Menu Options .. 20

3.0 Controller Tuning ... 25

4.0 Controller Software and RS-232 Communication .. 26

Controller Schematic .. 36

Controller Hookup Diagram (One Power Supply Setup) ... 37

Controller Hookup Diagram (Two Power Supplies Setup-Option 1) ... 38

Controller Hookup Diagram (Two Power Supplies Setup-Option 2) ... 39

Linear Control Hookup Diagram ... 40

Optional External Alarms Setup ... 41

Optional Multi-Speed Fan Control Setup .. 42

RS232 Communications Connections .. 43

TC-48-20 Mechanical Package Drawing .. 44

TC-48-20 OEM Mechanical Package Drawing .. 45

Standard Thermistors Available for TC-48-20 .. 46

Appendix A Temperature versus Resistance Curves .. 47

Appendix B Serial Communications .. 48
TE TECHNOLOGY, INC. (TE TECH)

License Agreement

CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THIS PACKAGE OR SIGNIFYING YOUR ACCEPTANCE BY CLICKING THE APPROPRIATE DIALOG BOX. OPENING THIS PACKAGE, CLICKING THE APPROPRIATE DIALOG BOX OR USING ANY PART OF THE SOFTWARE SIGNIFIES YOUR ACCEPTANCE OF (1) THESE TERMS AND CONDITIONS FOR THE LICENSED SOFTWARE, AND (2) THE TERMS OF ACCEPTANCE OF TE TECH FOR ANY PRODUCTS PURCHASED FROM TE TECH.

IF YOU DO NOT AGREE WITH THEM, PROMPTLY RETURN THE PACKAGE UNOPENED AND UNUSED ALONG WITH ANY OTHER ITEM THAT WAS INCLUDED IN THE SAME PRODUCT NUMBER FOR FULL CREDIT.

You, as the Customer, agree as follows:

1. DEFINITIONS

"Application Software" shall mean those portions of the Licensed Software created by TE TECH.

"Designated Hardware" shall mean the one (1) hardware device, purchased from TE TECH, upon which Customer shall run the Licensed Software.

"Licensed Software" shall mean the Application Software plus any other software supplied by TE TECH pursuant to this Agreement.

"Third Party Software" shall mean software owned or licensed by a third party, including but not limited to operating systems, that is embedded within the Licensed Software or otherwise included with any product provided to Customer from TE TECH.

2. LICENSE

2.1 Except as provided in section 2.2 below, you are granted only a personal, non-transferable, nonexclusive license to use the Licensed Software only on the Designated Hardware. You may copy the Licensed Software into machine readable form for backup purposes or to support your use of the Licensed Software on the Designated Hardware. No other copies shall be made unless authorized in writing by TE TECH. You may not (i) reverse engineer, decompile, or disassemble the Licensed Software (except to the extent such foregoing restriction is expressly prohibited by applicable law); (ii) sub-license, lease, or rent the Licensed Software; (iii) distribute in part, modify, or create derivatives of the Licensed Software; (iv) amend, modify, or supplement Licensed Software with any additional code except for the purpose of further configuring the Licensed Software for use with Designated Hardware; or (v) directly or indirectly, export, re-export, download, or ship the Licensed Software in violation of the laws and regulations of the U.S. The Licensed Software, comprising proprietary trade secret information of TE TECH and/or its Licensor’s, shall be held in confidence by Customer and protected from disclosure to third parties. No title to the intellectual property is transferred. You must reproduce and include all applicable copyright notices on any copy. Licensed Software shall not be copied, reproduced, or used for any other purpose outside of operation of the TE TECH hardware, and shall not be used on any other piece of hardware other than the TE TECH hardware with, or for, which it was provided. Notwithstanding the foregoing, in the event that you download the Licensed Software from the internet without purchasing Designated Hardware, the Licensed Software may only be used for evaluation purposes and must be deleted (including all copies) within fifteen (15) days of downloading. You may not use the Licensed Software with any other equipment other than the Designated Hardware without prior written approval from TE TECH. If no operating system software is included in the software provided under this Agreement, you must make provision for any required operating system software licenses. At its option, TE TECH may, upon request, provide the source code for the Licensed Software. The limited warranty provided in section 3 below shall be null and void immediately upon TE TECH providing the source code, or any portion thereof, to you.

2.2 If you are an authorized TE TECH distributor or an Original Equipment Manufacturer who incorporates the Licensed Software into your equipment for sale to an end user, or you use the Licensed Software to create redistributables, you may transfer the Licensed Software to an end user provided that the end user agrees to be bound by the provisions of this Agreement. You shall use your best efforts to enforce your agreement with customers made in accordance with this Section 2.2 and shall promptly report any violation or suspected violation to TE TECH. In the event that your customer violates any portion of this agreement, you agree to defend, hold harmless and indemnify TE TECH from any and all such claims. TE TECH may, at its option, bring suit against your customer to enforce the terms of this agreement, TE TECH’s costs and expenses incurred as a result of such action (including reasonable attorneys’ fees) shall be your responsibility.

2.3 The Licensed Software may include Third Party Software licensed to TE TECH. Customer hereby acknowledges and agrees that any Third Party Software provided by TE TECH to Customer hereunder (a) shall not be modified and shall be used and/or used and redistributed or resold (to the extent permitted under Section 2.2) only embedded within the TE TECH hardware product as provided by TE TECH, (b) shall always contain and only be redistributed (to the extent permitted under Section 2.2) with all proprietary markings present as provided to Customer hereunder and under the same terms and conditions as set forth in this Agreement. All rights and benefits afforded to TE TECH under this Agreement shall apply equally to the owner of the Third Party Software (the “Third Party”) and its licensors with respect to the Third Party Software. The Third Party and its licensors are intended third party beneficiaries of this Agreement, and the provisions of this Agreement relating to the Licensed Software, as the same incorporate the Third Party Software, are made expressly for the benefit of, and are enforceable by, the Third Party and its licensors. The Third Party and its licensors retain ownership of all copies of the Third Party Software. Unless a pass-through warranty covering the Third Party Software is extended directly to you by the Third Party, all Third Party Software is provided "AS IS" without warranty of any kind, and each Third Party and its licensors disclaim all warranties, either express or implied, including but not limited to the implied warranties of merchantability, title, non-infringement or fitness for a particular purpose with regard to the Third Party Software. The Third Party shall not have any liability for special, indirect, punitive, incidental or consequential damages.

2.4 EXCEPT AS PROVIDED IN SECTION 2.2 ABOVE, IF YOU TRANSFER POSSESSION OF ANY COPY OF THE LICENSED SOFTWARE TO ANOTHER PARTY WITHOUT WRITTEN CONSENT OF TE TECH, YOUR LICENSE IS AUTOMATICALLY TERMINATED. Any attempt otherwise to sublicense, assign or transfer any of the right, duties or obligations hereunder is void.

2.5 If the Licensed Software or associated documentation is provided to any U.S. Government entity, unit, or agency, the restrictions set forth at section 52.227-19(c) ("Commercial computer software - restricted rights") of the Federal Acquisition Regulations (FARs) shall apply. If the Licensed Software or associated documentation is provided to the U.S. Government, Department of Defense (DOD), or any entity, unit, or agency thereof, the restrictions set forth at section 252.227-7015 ("Technical Data -Commercial Items") of the DOD FAR Supplement (DFARS) shall also apply.

2.6 For rights granted in this Agreement, Customer shall pay to TE TECH the then-current product price (license fee) for each copy of the Licensed Software provided by TE TECH to Customer.

2.7 Customer shall pay all import duties and registration fees and all sales, use and excise taxes (and any other assessments in the nature of taxes however designated) on the Licensed Software or its license to use the Licensed Software, or resulting from this Agreement, exclusive of taxes based on TE TECH’s net income.
2.8 Customer acknowledges that the Licensed Software, including, without limitation, TE TECH logos, trademarks and all information contained therein, is proprietary to TE TECH, is valuable, gives a competitive advantage to TE TECH, and could not, without significant expense and difficulty, be obtained or duplicated by others who have not been able to acquire the same through means expressly authorized in this agreement. You agree that, unless you first obtain the prior written consent of TE TECH, or unless required by law, you shall not communicate or disclose, directly or indirectly, to any person or firm, or use at any time, any of the TE TECH’s proprietary information, except as provided in this Agreement. The provisions of the section, among certain others, shall survive the termination of this Agreement for whatever reason. The Licensed Software shall be and remain the exclusive property of TE TECH.

3. WARRANTY

3.1 Only if Customer has purchased Designated Hardware (the purchase price of which automatically includes the license fee), TE TECH warrants that the Application Software will be in substantial conformance with the specifications in the manual pertaining thereto as of the date of shipment by TE TECH. If, within ninety (90) days of date of shipment, it is shown that the Application Software does not meet this warranty, TE TECH will, at its option, either correct the defect or error in the Application Software, free of charge, or make available to Customer satisfactory substitute software, or, as a last resort, return to Customer all payments made as license fees and terminate the license with respect to the Application Software affected. TE TECH does not warrant that operation of the Application Software will be uninterrupted or error free or that it will meet Customer’s needs. All other portions of the Licensed Software are provided “as is” without warranty of any kind.

3.2 TE TECH warrants that the media on which the Application Software is delivered will be free from defects in material or workmanship under normal use and service for a period of ninety (90) days from the date of delivery. If any defects are discovered in the media is discovered and reported by Customer within ninety (90) days after delivery TE TECH shall, at no cost to Customer, upon return of same to TE TECH, replace the media and deliver (electronically) to Customer a new and complete copy of the Licensed Software.

3.3 Any modification to the Licensed Software by the Customer without the express written consent of TE TECH shall void the warranty.

3.4 THE FOREGOING WARRANTIES ARE EXCLUSIVE AND ARE IN LIEU OF ALL OTHER WARRANTIES WITH RESPECT TO THE LICENSED SOFTWARE WHETHER WRITTEN, ORAL, IMPLIED OR STATUTORY. NO IMPLIED OR STATUTORY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE SHALL APPLY. NO WARRANTY ARISING FROM COURSE OF PERFORMANCE, COURSE OF DEALING, OR USAGE OF TRADE SHALL APPLY. NOTWITHSTANDING ANYTHING TO THE CONTRARY HEREIN, UNLESS CUSTOMER HAS PAID TE TECH A SEPARATE LICENSE FEE THEREFOR, TE TECH MAKES NO WARRANTIES AS TO THE LICENSED SOFTWARE, WHICH IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED.

4. LIMITATION OF LIABILITY

4.1 IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, SHALL TE TECH OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PENAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFIT OR REVENUES, LOSS OF USE OF THE LICENSED SOFTWARE OR ANY PART THEREOF, OR ANY ASSOCIATED EQUIPMENT, DAMAGE TO ASSOCIATED EQUIPMENT, COST OF CAPITAL, COST OF SUBSTITUTE PRODUCTS, FACILITIES, SERVICES OR REPLACEMENT POWER, DOWN TIME COSTS, OR CLAIMS OF CUSTOMER’S CUSTOMERS AND TRANSFEREES FOR SUCH DAMAGES EVEN IF TE TECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4.2 EXCEPT AS PROVIDED IN SECTION 5, INDEMNITY, IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT OR WARRANTY, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, SHALL TE TECH’S LIABILITY TO CUSTOMER FOR ANY LOSS OR DAMAGE ARISING OUT OF, OR RESULTING FROM THIS AGREEMENT, OR FROM ITS PERFORMANCE OR BREACH, OR FROM THE LICENSED SOFTWARE OR ANY PART THEREOF, OR FROM ANY SERVICE FURNISHED HEREUNDER, EXCEED THE QUOTED CHARGES FOR THE LICENSED SOFTWARE. ANY SUCH LIABILITY SHALL TERMINATE UPON THE TERMINATION OF THE WARRANTY PERIOD AS SET FORTH IN SECTION 3.

4.3 If TE TECH furnishes Customer with advice or other assistance which concerns Licensed Software or any portion thereof supplied hereunder or any system or equipment on which any such software may be installed and which is not required pursuant to this Agreement the furnishing of such advice or assistance will not subject TE TECH to any liability, whether in contract, warranty, tort (including negligence) or otherwise.

4.4 The products (hardware and software) to be licensed or sold hereunder are not intended for use in any application specifically prohibited in writing by TE TECH, including, without limitation, in any nuclear, chemical or weapons production facility or activity, or other activity where failure of the products could lead directly to death, personal injury or severe physical or environmental damage. If so used, TE TECH disclaims all liability for any damages arising as a result of the hazardous nature of the business in question, including but not limited to nuclear, chemical or environmental damage, injury or contamination, and Customer shall indemnify, hold harmless and defend TE TECH, its officers, directors, employees and agents against all such liability, whether based on contract, warranty, tort (including negligence), or any other legal theory, regardless of whether TE TECH had knowledge of the possibility of such damages.

5. INDEMNITY

5.1 Should the Application Software be held by a court to constitute patent or copyright infringement and its use is enjoined, TE TECH shall, at its expense and option, either procure for Customer the right to continued use, or replace same with a non-infringing product or part, or modify the Application Software so that it becomes non-infringing, or remove the software and refund the license charge pertaining thereto (less reasonable depredation for any period of use) and any transportation costs separately paid by Customer. The foregoing states the entire liability of TE TECH for patent and copyright infringement by the Licensed Software or any part thereof.

5.2 The indemnity under the preceding paragraph shall not apply to any use of Application Software in conjunction with any other product in a combination not furnished by TE TECH as a part of this transaction. As to any such use in such combination, or any improper or unauthorized use, installation, or operation of the Application Software, TE TECH assumes no liability whatsoever for patent and copyright infringement and Customer will hold TE TECH harmless against any infringement claims arising there from (including, but not limited to, reasonable attorney’s fees).

6. TERM AND TERMINATION

6.1 You may terminate the license granted hereunder at any time by destroying the Licensed Software together with all copies thereof and notifying TE TECH in writing that all use of the Licensed Software has ceased and that same has been destroyed.

6.2 TE TECH, upon thirty (30) days’ notice, may terminate this Agreement or any license hereunder if Customer fails to perform any obligation or undertaking to be performed by it under this Agreement or if Customer attempts to assign this Agreement without the prior written consent of TE TECH. Within twenty (20) days after any such termination of this Agreement, Customer shall certify in writing to TE TECH that all use of the Licensed Software has ceased, and that same has been returned or destroyed, in accordance with TE TECH’s instructions.
6.3 Sections 4, 6 and 7 of this Agreement shall survive any expiration or termination and remain in effect. Termination of this Agreement or any license hereunder shall not relieve Customer of its obligation to pay any and all outstanding charges hereunder nor entitle Customer to any refund of such charges previously paid.

7. IMPORT/EXPORT

7.1 If you intend to import or export (or re-export), directly or indirectly, whether electronically or otherwise, the software products or technical data relating thereto supplied hereunder or any portion thereof, it is your responsibility to assure compliance with U.S. and other applicable governmental import and/or export control laws and, if appropriate, to secure any required licenses or approvals in your own name. You are also responsible for the accuracy and completeness of any information or certification you provide for purposes of import or export control compliance.

8. GENERAL

8.1 This Agreement shall be governed by the laws of the State of Michigan, without regard to its conflict of law provisions. You agree that any civil action or claims which relate to this Agreement or the Licensed Software must be brought and maintained in a court of competent jurisdiction located in Grand Traverse County, Michigan, or, alternatively, the U.S. District court for the Western District of Michigan. You hereby waive venue in any other forum. The provisions of the United Nations Convention on the International Sale of Goods shall not apply to this Agreement.

8.2 Should you have any questions concerning this Agreement, contact TE TECH by writing to: TE TECHNOLOGY, INC., 1590 KEANE DRIVE, TRAVERSE CITY, MI 49686.

8.3 YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US AND SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. FURTHER, NO CHANGE OR AMENDMENT TO THIS AGREEMENT SHALL BE EFFECTIVE UNLESS AGREED TO BY WRITTEN INSTRUMENT SIGNED BY A DULY AUTHORIZED REPRESENTATIVE OF TE TECH.
Features

The TC-48-20 is thermoelectric temperature controller capable of controlling up to 50 volts and 20 amps. Housed in a die-cast aluminum box, it incorporates a keypad and a liquid-crystal display capable of displaying two lines of text, each up to 16 characters long. The display allows the user to monitor the sensor temperature, output level, and menu settings. The integrated keypad accesses an easy-to-use menu system, allowing the user to adjust all of the basic controller parameters such as the set temperature, tuning parameters, and alarm parameters.

The controller can also be connected to a computer via RS232 port for more advanced program control, data graphing, and data logging. All of the controller parameters, including some of the advanced parameters not adjustable through the onboard menu, can be adjusted via this software. (The RS-232 cable is optional and can be purchased separately; the software is included.)

By choosing the appropriate power supply(s), the controller can control loads from 0 to <50 VDC via pulse-width modulation with the onboard power transistors. The turn-on and turn-off transition times for these transistors have been adjusted to reduce electro-magnetic interference when controlling high current levels. However, if a true linear-output control system is desired, the TC-48-20 can be used as the control head for controlling high-power, linear-output supplies. Some of these linear output supplies are available as basic switching power supplies, allowing the user to create a relatively low cost linear control system which generates much less waste heat when compared to a typical linear system. The TC-48-20 can also be configured to control DC heaters.

The TC-48-20 controller can be easily configured through its built in keypad. However, it can also interface with a computer through its serial port using the included software. The software provides all of the same configuration options that are available through the keypad plus additional programming features and the ability to log data to a computer. The command set for the controller is also provided to allow the creation of custom software applications with National Instruments LabVIEW, for example.
The TC-48-20 OEM is also available. This is a basic version of the controller for Original Equipment Manufacturers (OEM’s). It is intended to be used in locations where the controller can be protected by a secondary enclosure and where the display, keypad, and box cover are not needed. The TC-48-20 OEM controller is the basic control circuit from the TC-48-20 mounted on an aluminum plate. One MP-3193 thermistor, software and operation manual on CD are included with each controller. The MP-3023 RS-232 cable is not included, but it can be ordered separately.

The TC-48-20 OEM uses the same main circuit board found in the TC-48-20. The connector numbers and wiring are the same for both versions of the controller. The Schematics, Hookup Diagrams, and Wiring Connections presented in this manual are the same for both controllers. However, only the TC-48-20 version of the controller is depicted for clarity.
Main Features

- Single or dual power supply configurations allow a wide range of output voltages:
 - Single power supply configuration:
 - ≥9 VDC, <50 VDC input, powering both controller and TE device
 - Dual power supply configuration:
 - ≥9 VDC, <50 VDC at 150 mA minimum for controller circuitry
 - ≥0 VDC, <50 VDC for TE device
- Maximum output current: 20 A combined TE device and alarm current (Note: controller does not have current limiting capability or internal fuse protection)
- Cool-only or heat-only control modes, menu selectable
- Temperature control range: –20 °C to +100 °C using the MP-3193 thermistor supplied with the controller, or -20 °C to +85 °C using a thermistor equivalent to 10 k-ohm, curve “B” from YSI Temperature, Inc.
- Optional secondary thermistor input for sensing alarm conditions
- Two available alarm outputs, capable of sinking up to 1 A each, for triggering alarms based on the primary (control) sensor and/or secondary sensor
- Best-case control stability ±0.1 °C (when controlling a cold plate)
- Proportional (P) bandwidth adjustment: 0.5 °C to 100.0 °C
- Integral gain (I) adjustment: 0.00 to 10.00 repeats per minute
- Derivative gain (D) adjustment: 0.00 to 10.00 cycles per minute
- Output: square wave, 337 Hz, pulse-width modulated, with soft start
- Analog proportional output signal for controlling programmable linear power supplies
- Operating temperature range (non-condensing, total combined alarm and load current):
 - Minimum: 0 °C
 - Maximum: 48 °C horizontal orientation, 20 A output; 55 °C vertical orientation, 20 A output; 53 °C horizontal orientation, 17 A output; 59 °C vertical orientation, 17 A output.
- Computer programmable via RS 232 communication; includes software (An optional RS-232 cable, part number MP-3023, is required)
- RoHS compliant
Pulse-width modulated power output

The TC-48-20 controller regulates the output power to the TE device using a method called pulse-width modulation (PWM). With PWM, power to the TE device is switched quickly "ON" and "OFF" at a constant frequency. This creates a square wave “pulse” of power with a constant time period. The "ON" time, or pulse width, can be varied to create an average output voltage (Vaverage) that is required by the TE device to maintain the set temperature.

The important advantage to PWM control is that it does not cause the extreme temperature excursions that are experienced with a thermostatic control system. This helps to extend the life and reliability of the TE device. At the same time, PWM control does not generate a large amount of waste heat as compared with most linear control systems, so large heat sinks are not required with the PWM temperature controller.

Linear control output

The controller also provides an analog proportional output signal. This cannot be used for powering TE devices directly, but it could be used for a variety of purposes including controlling programmable power supplies. For example, if the TE device were to require more than 20 A of current, or if true linear control were needed, the TE device could not be directly connected to the controller. However, the TE device could be connected to a higher current power supply that accepts an analog input, and the controller could then direct the power supply to apply its output proportional to the analog output from the controller. Because these power supplies usually have a linear output signal this method also reduces the electromagnetic noise that might otherwise come from a PWM type controller.

One such power supply that accepts an analog input is the RKW programmable series switching power supplies from Kepco (www.kepcopower.com). These power supplies accept a 0 to 5 volt input signal which causes the output voltage of the power supply to vary from 0 V to its full-scale voltage. These power supplies are available with full-scale voltages that range from 3.3 V to 48 V and they are available in 300, 600, and 1500 watt sizes. Because these are switching power supply there is again the added benefit of little waste heat as compared with most types of linear control systems. In addition, multiple power supplies can be operated in parallel to boost the total output power.
If you wish to limit the output voltage of the power supply to less than its full scale voltage you can adjust a controller parameter called the ANALOG OUTPUT MULTIPLIER. For example, assume you have chosen to use a Kepco RKW 24-65K model power supply. This is a 1500 watt power supply with a full-scale output of 24 V and 65 A. If you wish to limit the output voltage to approximately 20 V, you can set the analog multiplier to 0.83 (20V / 24V). This scales the analog output voltage to 4.15 V and thus limits the output voltage of the power supply accordingly. The ANALOG OUTPUT MULTIPLIER is scalable only by communicating with the controller via the software through the RS-232 interface. An RS-232 cable, part number MP-3023 or equivalent, is required to connect the controller to a computer. The factory default value for the ANALOG OUTPUT MULTIPLIER is 1.

Using alarm outputs for multi-speed fan control and other load control

The alarm outputs can be configured to operate a fan at two different speeds, which is useful for keeping fan noise to a minimum. For example, by using a second sensor to measure the ambient air temperature, ALARM 2 can be used to run the fan at high speed only when the ambient air temperature is high and increased cooling capacity is needed. Alternately, the second sensor can measure the heat sink temperature. If the heat sink temperature begins to rise because the ambient temperature is increasing or because the heat source is active, ALARM 2 is triggered to run the hot-side fan at full speed. An external resistor, placed in series with the fan, is required.

The alarms can also be configured to activate other loads such as pumps and resistive heaters. A fixed value resistor can be used in place of the second sensor, causing the controller to interpret the fixed resistance as a fixed temperature. Changing the alarm temperature above or below this fixed temperature will then cause the alarm, and consequently the load, to be activated or deactivated. The second sensor temperature display can also be turned off when the temperature data is not relevant.
1.0 Setup

1.1 Attach the thermistor at an appropriate temperature-control location. Locating the thermistor at the cold side of the TE device provides better control stability than locating it at the object, liquid, or air that is to be cooled/heated. However, in doing so, there will be a temperature difference between the TE device and the object, liquid, or air that is to be cooled/heated. The temperature set point can be adjusted to compensate for this temperature difference if necessary.

NOTE: When possible, it is recommended that at least 50 mm of the thermistor’s wire be thermally connected to the cold side of the TE device as shown in the example below. This can be accomplished by placing aluminum tape over the thermistor wires and adhering the wires and tape to the cold side of the cooler, as shown below. If this is not done, the thermistor wires will be at a different temperature than the cold side and they will add or remove heat in the region of the thermistor, making the temperature reading significantly less accurate and thermal response time slower.

![Thermistor Connection Example](image)

The wire leads of the thermistor can be lengthened if necessary. For longer lengths the use of twisted pair and/or shielded wire may be required to reduce noise.

In addition, the thermistor needs to have a good thermal connection to the temperature control location. When using the MP-3193, thermal grease should be applied to the interface of the thermistor and temperature-control location. The TP-1 thermal grease from TE Technology or other thermal grease can be used.

The TC-48-20 is supplied with the MP-3193 thermistor. Other thermistor styles directly compatible with the controller are available as options. See “Thermistor Styles for TC-48-20” for reference. In addition, the controller can be configured to use thermistors that have the same temperature-resistance curves as the 10 k-ohm, curve “B” thermistor from YSI Temperature, Inc. (Resistance versus Temperature curves are in Appendix A.)

If you want to use a thermistor that has a different resistance-temperature curve from the standard MP-3193 (See “Temperature versus Resistance for MP-3193, MP-2444, and MP-2542 Thermistors” for reference) or the 10 k-ohm thermistor, it can be done as long as the operating resistance range is within that of the standard thermistor. The thermistor must be a negative temperature coefficient device. Because the temperature controller is really measuring the thermistor’s resistance and converting this to a temperature, the temperature controller will be fooled into thinking that the thermistor is at a different temperature than it really is, and the Set-Temperature will be skewed accordingly. A loss of resolution and control stability may occur as a result. The user assumes all risks associated with making any substitutions, and TE Technology assumes no liability whatsoever for the operation of the controller when a non-standard thermistor is used.

1.2 Connect the thermistor wire leads to JP5-1 and JP5-2. (See “Controller Schematic” and the “Controller Hookup” drawings for reference.)

1.3 A secondary thermistor can be connected to JP5-3 and JP5-4. The secondary thermistor can then used to monitor the hot side of the TE device for determining whether the TE device has exceeded its maximum
operating temperature. The controller can be configured to signal an alarm condition on either the control thermistor or the secondary thermistor or both.

1.4 The TC-48-20 can be used with either one or two separate DC power supplies, depending primarily on the nominal operating voltage of the TE device. If the maximum TE device input voltage is less than 9 V, then two power supplies must be used with the controller. If the TE device can use a voltage ≥9 V but <50 V, then the controller can be used with either one or two power supplies.

The controller can also be set up to provide linear control output when used with a power supply whose output can be controlled with a 0 to 5 V signal. The power supply can then provide a power output proportional to the signal sent by the controller. This setup is also useful for situations in which the TE device requires more power than what the controller itself can directly handle. However, this setup will reduce the overall control stability. The voltage signal from the controller is actually obtained by filtering the PWM output, and this introduces a slight delay in the control response. Also, there will be a delay in the response of the power supply since it too must process the correct power output based on the sensed voltage input from the controller.

When using one power supply for powering the controller and the TE device together, the power supply input voltage is passed directly through the controller to the TE device during the “ON” pulse. The user should choose an input voltage that is required for the TE device and yet is also ≥9 V but <50 V. The controller could be damaged if operated outside this voltage range.

When using two power supplies, the controller input power supply must be ≥9 V but <50 V at 150 mA minimum. The power supply input voltage for the TE device can be ≥20 V but <50 V.

The maximum allowable current through the controller is 20 A. The maximum allowable current draw for the TE device must therefore be less than 20 A depending on if and how much current is used to power alarm signals and the controller itself. The 20 A limit applies regardless of whether you are using one power supply or using two independent power supplies.

The controller does not have an internal fuse or circuitry to limit current. Therefore, an external fuse, appropriately sized for protecting the controller/TE device, should be connected between the power supply and the controller to prevent damage to the controller/TE device and to prevent injury to the user should an over-current condition occur. Alternately, a power supply with integral over current protection can be used if it is appropriately sized for protecting the controller/TE device.

When making a cooling system from a single TE device, the maximum operating voltage for that system is usually no more than 75% of the rated Vmax of the TE module. The 75% rule is based on the TE module being thermally connected to a “good” heat sink; system modeling should be done to verify this rule is applicable though. If multiple TE modules are used in series or series-parallel combination, the Vmax of the system will be approximately 75% of the rated Vmax of each TE module multiplied by the number of modules in series. Applying a voltage greater than the system maximum will not necessarily damage the controller (unless voltage and/or current limits are exceeded), but the TE device could be damaged by overheating as a result.

Power supply and TE Device wire leads should be kept as short as possible to minimize electrical losses and reduce the likelihood of generating unwanted electromagnetic interference. Use wires of a sufficient gage appropriate to the amount of electrical energy each wire is to carry. Wire insulation and size must also be appropriate to the ambient temperature and/or temperature of objects in contact with the wire. Wire leads supplied by TE Technology are for prototyping purposes and should be reviewed for appropriateness in the final application. Wire length must not exceed one meter. However, see also warnings about wire length under section 1.6.
Use protection devices to prevent hazardous conditions and/or damage to the load (e.g. cooling assembly, heater, etcetera) and other related equipment. Protection devices must operate independently of the temperature controller circuitry. Protection devices should be placed at all points on the load and related equipment where a hazardous condition can be detected. These protection devices should de-energize the TC-48-20, the load, and, as necessary, other related secondary equipment. It is further recommended that such devices require the user to remove and correct the root cause of a fault before allowing the TC-48-20, the load, and related equipment to be re-energized. Protection devices should include, but are not limited to:

- Fuses to prevent against electrical overloads,
- Over/under temperature thermostats to prevent against hazardous and/or damaging temperatures,
- Liquid flow meters to prevent against damage due to loss of coolant flow

The TC-48-20 controller (in conjunction with the standard and optional sensors) can detect under-temperature and over-temperature conditions, and it can be configured to de-energize the load when such a condition is detected. However, hazards and/or risk of loss or damage to the load (e.g. cooling assembly, heater, etcetera), and/or secondary equipment could still occur if the temperature controller and/or sensors were to malfunction. Therefore, independent, redundant protection devices are recommended in addition to the safeguards provided by the temperature controller. For the purposes of this manual the temperature controller and sensors are not considered protection devices.

The controller does not have an internal fuse or circuitry to limit current. Therefore, an external fuse, appropriately rated for protecting the controller/TE device, should be connected between the power supply and the controller to prevent damage to the controller/TE device and to prevent injury to the user should an over-current condition occur. Alternately, a power supply with integral over current protection can be used if it is appropriately sized for protecting the controller/TE device.

1.4.1 One Power Supply Operation:

Make sure the power supply is NOT energized while making electrical connections to the controller.

a) Connect the constant DC voltage power supply, ≥9 V but <50 V to the controller:
 Positive (+) power supply terminal to JP4-1
 Negative (-) power supply terminal to JP4-2

b) Do NOT connect the TE device to the controller at this time (unless you are certain the set point is within the allowable range of the TE device).

c) See the “Controller Hookup Diagram (One Power Supply Setup)” for further details.
1.4.2 Two Power Supplies Operation:

![Warning] Make sure the power supplies are NOT energized while making electrical connections to the controller.

a) Connect the constant DC voltage power supply, ≥9 V and <50 V, 150 mA minimum, to the controller (for powering the controller electronics):
 - Positive (+) power supply terminal to JP5-6
 - Negative (-) power supply terminal to JP5-5
 OR
 - Connect to JP3 via the DC power plug, ≥9 V and ≤16 V, 150 mA minimum (inside-positive; outside-negative)

![Warning] Do not connect power to JP3 and JP5 at the same time; otherwise the controller and/or power supplies might be damaged and a risk of fire might result.

b) Connect the constant DC voltage power supply, ≥0 V but <50 V, to the controller (for powering the TE device):
 - Positive (+) power supply terminal to JP4-1
 - Negative (-) power supply terminal to JP4-2

c) Do NOT connect the TE device to the controller at this time (unless you are certain the set point is within the allowable range of the TE device).

d) See the “Controller Hookup Diagram (Two Power Supplies Setup-Option 1)” or “Controller Hookup Diagram (Two Power Supplies Setup-Option 2)” for further details.

1.4.3 Linear Control Operation:

![Warning] Make sure the power supplies are NOT energized while making electrical connections to the controller.

a) Connect the constant DC voltage power supply, ≥9 V and <50 V, 150 mA minimum, to the controller (for powering the controller electronics):
 - Positive (+) power supply terminal to JP5-6
 - Negative (-) power supply terminal to JP5-5
 OR
 - Connect to JP3 via the DC power plug, ≥9 V and ≤16 V, (inside-positive; outside-negative)

![Warning] Do not connect power to JP3 and JP5 at the same time; otherwise the controller and/or power supplies might be damaged and a risk of fire might result.

b) Connect the remote voltage control points of the programmable power supply to the controller; consult the power supply manual for remote control setup:
 - Positive (+) remote control terminal to JP5-12
 - Negative (-) remote control terminal to JP5-5

 NOTE: depending on the power supply remote control input requirements, an external voltage buffer might be required between the controller and the power supply.

c) Do NOT connect the TE device to the power supply at this time (unless you are certain the set point is within the allowable range of the TE device).

d) See the “Linear Control Hookup Diagram” for further details.
1.5 Turn on power to the power supply (which then powers the controller). When the controller is first turned on, it goes through an initialization sequence which shows the TE Technology website address and that the controller is indeed the TC-48-20. The display then switches to the primary screen.

Verify that the set point is set to a temperature that is within the allowable temperature range of the TE device and/or the application and that the controller is set to the appropriate cooling or heating mode.

⚠️ The factory default is set to have output power to the TE device enabled when the controller is powered. This can only be turned off by using the software. Therefore, DO NOT CONNECT THE TE DEVICE TO THE OUTPUT OF THE CONTROLLER UNTIL THE APPROPRIATE CONTROL TEMPERATURE AND HEATING/COOLING MODE HAVE BEEN SET.

Set point adjustment and other parameter adjustments are described in the Section 2 below.

1.6 Turn off power to the controller and connect the TE device to the controller as follows:

COOLING MODE:
- a) Connect the positive (+) terminal of TE device to JP4-3
- b) Connect the negative (-) terminal of TE device to JP4-4
- c) Verify/set controller to “COOL” mode; see Section 2 below.

HEATING MODE:
- a) Connect the negative (-) terminal of TE device to JP4-3
- b) Connect the positive (+) terminal of TE device to JP4-4
- c) Verify/set controller to “HEAT” mode; see Section 2 below.
TE Technology’s standard thermoelectric cooling assemblies (TCA) usually have at least one fan on the heat sink. The standard configuration has the thermoelectric modules and fan(s) wired to a terminal block with jumpers across the terminals so that the fans and TE modules are connected electrically in parallel. However, this configuration is applicable only when applying power directly from the power supply. When using the TCA with the temperature controller, two jumpers **MUST** be removed so that the controller is controlling power only to the thermoelectric modules. There must be no electrical connection between the fans and the TE modules; fans must be connected directly to the power supply, not to the controller. **The controller will be damaged if this is not followed.** See the TCA manual for further details, but the picture below shows the basic setup.

Temperature Controller Connection

Review electrical jumper connections. Remove electrical jumpers as required.

![Terminal Block Cover removed for clarity. Re-install before operation.](image)
The printed circuit board underneath the JP4 terminal block can reach a normal operating temperature of approximately 90 °C. The controller specifications are based on using wires connecting to JP4 to meet UL 1015 requirements and have a wire size of 2.02 mm² effective cross-sectional area, which is comprised of 41 strands of 0.254 mm diameter copper wire. The effective equivalent wire size is 14 AWG. The specifications are further based on a wire length of 410 mm between the power supply and the controller and a wire length of 920 mm between the controller and the TE device. Using wire with a smaller conductor cross section and/or shorter in length might cause abnormally high temperature to be present on the JP4 terminal block and wire. If smaller and/or shorter wire must be used, the amount of current the controller can safely accept might need to be decreased and/or the ambient temperature at which the controller can operate might need to be lowered.

The wires inserted into connector JP4 should have a strip length of 7 mm, be fully inserted into the connector, and the JP4 screw terminals should be tightened with a minimum torque of 0.5 N-m. The wires inserted into connector JP5 should have a strip length of 5 mm, be fully inserted into the connector, and the JP5 screw terminals should be tightened with a minimum torque of 0.25 N-m.

1.7 Turn on power supply to the controller and power supply to the TE device if applicable and adjust controller settings as necessary. Controller tuning is discussed in section 3. Remember, the factory default is set to have output power to the TE device enabled when the controller is powered. This can only be turned off by using the software. Therefore, you should also be prepared to de-energize the controller power in case there is an incorrectly set parameter which could cause a hazard.

NOTE: The factory default assumes a secondary thermistor is connected to the controller. **When not using a thermistor on the second sensor input the user will need to adjust the ALARM 2 FUNCTION to KEEP OUTPUT ON.** See section 2.3.10 and 2.3.11 for further details.

The keypad can reach a normal operating temperature of 70 °C.

When vertically mounted the terminal blocks should be positioned pointing upwards, with the direction of gravity parallel to the plane of the controller mounting surface. The maximum temperature specifications (vertical orientation) are based on this positioning. When mounted in an orientation between horizontal and vertical, the terminal blocks should be mounted in the upward most position (with the direction of gravity defined as point downward). These positions allow heat to rise upward, out of the opening of the box. Orientations differing from this could cause the controller to overheat.

Do not mount the controller to a surface which is exposed to a source of heat, such as from electronics, machinery, or solar radiation.

Do not cover the controller with any object or otherwise restrict natural convection airflow around the controller. Doing so could cause the controller to overheat.

Do not mount the controller to an insulating surface. Doing so could cause the controller to overheat.

Do not operate the controller in such a manner as to cause the surface temperature of the case or internal temperature to reach 70 °C. Otherwise the controller might be damaged and there might be a risk of fire as a result.

Do not allow the controller to be exposed to water (such as from dripping or leaking water lines or in which the controller is operating at or below the dew point temperature)

Do not allow metallic dust/shavings to enter into the controller box.
2.0 Display and Menu Options

Note: this section applies only to the TC-48-20. Setup, programming, and communications with the TC-48-20 OEM controller can only be accomplished by using the computer software with the optional MP-3023 RS232 cable. Changes made to the controller using the keypad are always stored in the EEPROM regardless of EEPROM WRITE ENABLE setting.

2.1 Initialization screen

1. Displays for 1.5 seconds: TE TECHNOLOGY
 www.tetech.com
2. Displays for 1.5 seconds: TE TECHNOLOGY
 TC-48-20 Rev. ****

2.2 Primary screen

TEMP = ###.# °C
OUT = ###% T2=##

The controller displays information about the following items:
1) The temperature of the control sensor (TEMP) to a 0.1 °C resolution
2) The output level (duty cycle) to the thermoelectric modules (OUT)
3) The temperature of the second temperature sensor (T2)

- If the control sensor is either an open circuit or a short circuit (indicating that the sensor is not connected or has failed), the controller will display SENSOR 1 ERROR on the top line of the display instead of TEMP = ###.# °C. The output % will also be forced to 0% until the error is resolved.
- If a secondary sensor is not connected to the controller, T2=### will not be displayed (unless it is forced to display by using the software menu setting).

If ALARM 1 or ALARM 2 has caused the power output to be turned off, the words ALARM and OUT= 0% will flash in alternating sequence in the place of the normal OUT=###% indicator. When not using a thermistor on the second sensor input the user will need to adjust the ALARM 2 FUNCTION to KEEP OUTPUT ON.

Parameters Menu

When at the Primary Screen (shown below), depressing the MENU key allows the user to scroll through and adjust the various controller parameters.
• Press the “MENU” button momentarily to select the parameter to be changed.
• Press the Up/Down arrow keys to adjust the parameter value.
• If there is more than one value for any given parameter the MENU key will scroll from the first value to the next value and then on to the next parameter.
• Holding the Up/Down arrow keys will cause the value to increment faster.
• The display will return to the primary screen after eight seconds if no keys are depressed.

2.3.1 SET TEMPERATURE
Values: -20.0 °C to +199.0 °C, or as defined by the limits set by CONTROL RANGE
Default value = 25.0 °C

Description: SET TEMPERATURE is the control temperature that the controller tries to maintain. Note that controller set point should not be set outside the range suitable for the temperature sensor. Consult TE Technology for customization if you need a thermistor that can provide a different control range. Also, be sure that the set point is also appropriate to the TE device.

2.3.2 PROPORTIONAL BW
Values: 0.5 °C to 100.0 °C
Default value = 5.0 °C

Description: The proportional bandwidth is the temperature span over which the power is proportioned from 100% to 0% power, centered about the temperature set point. That is, the controller output decreases to 50% power as it reaches the set point and to 0% as it reaches the end of the bandwidth range below the set point (when in the cooling mode).

For example, suppose the controller is being operated in the cooling mode, the set point is 10.0 °C, and the bandwidth is set to 5 °C. The controller power starts to proportionally decrease as the sensor temperature cools below 12.5 °C. The power will be reduced to 50% when the sensor is at 10.0 °C. Finally, the power will be at 0% when the sensor is at 7.5 °C. (Of course, this example presumes that the INTEGRAL GAIN and DERIVATIVE GAIN are set to 0 and that the cooler would have enough capacity to cool to 7.5 °C.)

If the bandwidth is set too narrow, the temperature will oscillate around the set point. If the bandwidth is too wide, the controller will be slow to respond or may never reach set point.

2.3.3 INTEGRAL GAIN
Values: 0.00 to 10.00 (repeats per minute)
Default value = 1.00

Description: This corrects for any offset between the set temperature and the sense temperature by averaging the offset with respect to time. This essentially shifts the proportional bandwidth.

For example, suppose the set temperature is 10.0 °C, the bandwidth is set to 5 °C, and the controller settled to a constant 11.2 °C (corresponding to 74% power). If the integral control is then set to 1 repeat per minute, the controller will increase the power to 98% in 1 minute, providing extra cooling to move the temperature closer to the set temperature. In this example, after one minute of operation the controller calculated that the difference between the desired set temperature and the actual temperature was +1.2 °C. With a bandwidth of 5 °C, the controller uses the INTEGRAL GAIN to add an additional 24% output per minute (100% output / 5 °C * 1.2 °C = 24 %). This additional 24% output was added to the existing 74% output to yield 98% output. The integral portion of the output is continuously recalculated at the rate specified by the integral gain setting. The INTEGRAL GAIN always adds or subtracts from the present output power. Of course, the maximum output is limited to 100% and the minimum is limited to 0%.

If the integral control is set too high, the temperature will oscillate. If integral control is set too low, it will take a long time for the temperature to settle to steady state.
2.3.4 DERIVATIVE GAIN
Values: 0.00 to 10.00 (cycles per minute)
Default value = 0.00

Description: This senses the rate of change of the temperature and allows the controller to anticipate the power needed to compensate for rapid changes in the system loading. The derivate gain is generally used on very sluggish systems or where very quick response is necessary. It works in a similar way to the integral gain, but it acts upon the change in the error, not the absolute error.

2.3.5 SENSOR TYPE
Values: 15K-1 or 10K-1
Default value = 15K-1

Description:
15K-1 should be selected when using the supplied MP-3193 thermistor or other thermistors with equivalent temperature-resistance curves. See Appendix for further details.

10K-1 should be selected when using thermists equivalent to 10 k-ohm, curve “B” temperature-resistance curve as defined by YSI Temperature, Inc.

⚠️ If you are using two thermistors, they must have the same resistance versus temperature characteristics. Also be sure that you have selected the correct sensor type. Otherwise a dangerous condition could exist because the actual temperature could be higher or lower than the temperature being interpreted by the controller.

2.3.6 CONTROL MODE
Values: COOL or HEAT
Default value = COOL

Description:
COOL mode causes the controller to increase the output power when the control sensor temperature is greater than the set temperature.

HEAT mode causes the controller to increase the output power when the control sensor temperature is less than the set temperature. (This mode can also be used with resistive heaters.)

Note: If you are using a TE device in the cool mode and you want to switch to the heat mode, you must also switch the connection between JP4-3 and JP4-4.

2.3.7 CONTROL RANGE
Values: -20 to 199, applies to both HIGH and LOW settings
Default value for HIGH = 070
Default value for LOW = -20

Description: Sets the maximum and minimum temperatures available in the SET TEMPERATURE menu. This is a safety feature that helps to limit the set point to the safe operating temperature of the system being controlled. Adjustments are in 1 °C increments, and the high setting must be higher than the low setting.

Note: If the CONTROL RANGE is adjusted such that it is no longer inclusive of the SET TEMPERATURE, the controller will continue to control to that SET TEMPERATURE. However, once you scroll to the SET TEMPERATURE menu, the SET TEMPERATURE will automatically reset to be within the CONTROL RANGE, and the output power will adjust accordingly. The SET TEMPERATURE can then only be set within the CONTROL RANGE.
2.3.8 TEMP OFFSET
Values: -10.0 °C to +10.0 °C
Default value = 0.0 °C

Description: Offsets the control sensor value for both the display and control algorithm.

2.3.9 ALARM 1 TEMPS
Values: -20 to 199 or OFF for HIGH setting; -20 to 199 or OFF for LOW setting
Default value for HIGH = 60
Default value for LOW = -20

Description: This sets the high and low temperatures for signaling an alarm based on the control sensor temperature. Adjustments are in 1 °C increments, and the high setting must be higher than the low setting. If the HIGH setting is increased past 199, OFF is indicated and no alarm will be signaled based on the control sensor for over-temperature conditions. If the LOW setting is decreased past -20, OFF is indicated and no alarm will be signaled based on the control sensor for under-temperature conditions.

Note: If the controller senses an open circuit or a short circuit on the control sensor, the controller will automatically turn off output power, regardless of the ALARM 1 FUNCTION setting.

2.3.10 ALARM 1 FUNCTION
Values: KEEP OUTPUT ON or TURN OFF OUTPUT
Default value = TURN OFF OUTPUT

Description: This setting determines what action will be taken when there is an alarm condition on the control sensor. When KEEP OUTPUT ON is selected, output power to the TE device stays on during the alarm condition, and the alarm 1 signal on JP5-10 is activated. When TURN OFF OUTPUT is selected, output power to the TE device is turned off, and the alarm 1 signal on JP5-10 is activated.

⚠️ The ALARM 1 and ALARM 2 outputs on JP5-10 AND JP5-11 will momentarily pulse on and off several times in the first second after the controller is turned on. This happens as the microprocessor in the controller configures itself, regardless of any alarm condition.

2.3.11 ALARM 2 TEMPS
Values: -20 to 199 or OFF for HIGH setting; -20 to 199 or OFF for LOW setting
Default value for HIGH = 60
Default value for LOW = -20

Description: This sets the high and low temperatures for signaling an alarm based on the optional, secondary sensor temperature. Adjustments are in 1 °C increments, and the high setting must be higher than the low setting. If the HIGH setting is increased past 199, OFF is indicated and no alarm will be signaled based on the secondary sensor for over-temperature conditions. If the LOW setting is decreased past -20, OFF is indicated and no alarm will be signaled based on the secondary sensor for under-temperature conditions.

Note: If the controller senses an open circuit or a short circuit with respect to the thermistor, the controller will signal an alarm condition (assuming it is not set to OFF). In addition, if the controller senses an open thermistor circuit, T2 will not be displayed in the primary screen.

2.3.12 ALARM 2 FUNCTION
Values: KEEP OUTPUT ON or TURN OUTPUT OFF
Default value = TURN OUTPUT OFF
Description: This setting determines what action will be taken when there is an alarm condition on the secondary sensor. When KEEP OUTPUT ON is selected, output power to the TE device stays on during the alarm condition, and the alarm 2 signal on JP5-11 is activated. When TURN OFF OUTPUT is selected, output power to the TE device is turned off, and the alarm 2 signal on JP5-11 is activated.

⚠️ The ALARM 1 and ALARM 2 outputs on JP5-10 AND JP5-11 will momentarily pulse on and off several times in the first second after the controller is turned on. This happens as the microprocessor in the controller configures itself, regardless of any alarm condition.

2.3.13 ALARM LATCHES

Values: NO LATCHES, ALARMS 1&2 LATCH, ALARM2 LATCH, ALARM1 LATCH

Default value = NO LATCHES

Descriptions:

NO LATCHES: If an alarm condition occurs but then clears itself, the alarm signal will automatically turn off and power to the TE device will be restored (if ALARM 1 FUNCTION and ALARM 2 FUNCTION are set to TURN OUTPUT OFF).

⚠️ If the alarm condition is recurring and the ALARM 1 FUNCTION and/or ALARM 2 FUNCTION is set to TURN OUTPUT OFF, the TE device can be damaged by thermal fatigue stress imposed by repeated long-term power cycling.

NOTE: The default deadband for the latch reset is 0 °C. However, the deadband can be reprogrammed using the RS232 interface to allow for the latch to reset at a specified temperature difference above/below the alarm set point. You can use the software provided with the controller or you can create your own software and use the controller commands as described in “Serial Communications” in the appendix.

ALARMS 1&2 LATCH: if an alarm condition occurs from either the control or secondary sensor or both, the controller will continue to signal an alarm until reset, even if the alarm condition is cleared. Power to the controller must be turned off and then on again to turn off the alarm signal. Alternatively, press and hold the UP ARROW button for three seconds to clear the alarm signal and reset the latches.

ALARMS 2 LATCH: if an alarm condition occurs from the secondary sensor, the controller will continue to signal the alarm until reset, even if the alarm condition is cleared. Power to the controller must be turned off and then on again to turn off the alarm. Alternatively, press and hold the UP ARROW button for three seconds to clear the alarm and reset the latch.

ALARMS 1 LATCH: if an alarm condition occurs from the control sensor, the controller will continue to signal the alarm until reset, even if the alarm condition is cleared. Power to the controller must be turned off and then on again to turn off the alarm. Alternatively, press and hold the UP ARROW button for three seconds to clear the alarm and reset the latch.

Multi-Speed Fan Control and control of other loads: The alarms can be used for controlling the hot-side fan of a TE device at two different speeds. The low-speed setting is useful for reducing noise when the demand for cooling is low. The high-speed setting can be triggered when an alarm condition is sensed to maintain cooling performance as required. Alarm deadband can be added to keep the fan speed from oscillating. See the “Optional Multi-Speed Fan Control Setup” drawing for further details. Note: each alarm output can handle other load types with up to 1 A of current draw. The controller can handle up to 20 A overall combines output and alarm current.
3.0 Controller Tuning

This tuning method follows the Ziegler-Nichols closed-loop tuning principals. Briefly, the controller will first be set to a high proportional bandwidth setting with no integral or derivative function (integral gain and derivative gain = 0). Then, the bandwidth is gradually decreased until the temperature approaches set point and a small, sustained oscillation in temperature is observed. The other tuning parameters are then readjusted based on the time period of the temperature oscillation (natural period) and the proportional bandwidth needed to cause this oscillation.

Improper tuning of this temperature controller can lead to excessive thermal cycling and/or overheating of the thermoelectric device, either of which are known to reduce the lifetime of any thermoelectric device. Care should be taken to prevent the temperature of the thermoelectric device from going beyond the range specified by the device manufacturer. Care should also be taken so that any thermal cycling of the thermoelectric device is a result of changes in the controller’s set-point temperature and not instability at a given set point due to improper selection of the tuning variables.

3.1 Set the desired control temperature in the SET TEMPERATURE menu.

3.2 Set the PROPORTIONAL BW to 20. This is just a starting value; the goal is to determine the proportional bandwidth at which the temperature of the TE device will first begin to oscillate. The bandwidth needs to be adjusted in incremental steps and allow the controller to reach steady state between each adjustment. You might be able to start with a smaller bandwidth, depending on the system, thereby reducing the time it takes to determine the proper bandwidth for good control stability.

3.3 Set the INTEGRAL GAIN and DERIVATIVE GAIN to zero.

3.4 Decrease the PROPORTIONAL BW incrementally, allowing the TE device to reach steady state at each increment, until the temperature of the TE device begins to oscillate. The system temperature will usually begin to oscillate before it actually reaches the set point temperature; this is normal. You can decrease the bandwidth in initial increments of 5 °C or perhaps even more. Then, once an initial oscillation is observed, increase the bandwidth in small increments until the oscillations are barely detectable.

Measure the time period of oscillation in minutes. This will be used to determine the INTEGRAL GAIN setting below.

3.5 Multiply the current PROPORTIONAL BW setting by 2.2 and enter this as the new bandwidth. The system should now maintain a steady state temperature near the set point.

3.6 The integral gain is calculated as follows: \(I = \frac{0.54}{T} \) where \(I \) is the integral gain and \(T \) is the time period, in minutes, determined in section 3.4 above. Enter this value in the INTEGRAL GAIN setting.

3.7 The derivative gain is often times difficult to use and might cause more trouble than it is worth. If you are not experience with process control, you might be better off leaving the DERIVATIVE GAIN set to zero.

If you decide to use derivative gain, the other control parameters should be adjusted first.

a) Instead of multiplying the initial proportional bandwidth setting by 2.2, multiply it by 1.7, and enter this as the new PROPORTIONAL BW setting.

b) Calculate the integral gain as follows: \(I = \frac{1.2}{T} \), and enter this into the INTEGRAL GAIN setting.

c) Calculate the derivative gain as follows: \(D = 0.075 \times T \), and enter this into the DERIVATIVE GAIN setting.

3.8 The control parameters are approximate settings. Further adjustments might be needed.

Tuning Example using proportional bandwidth and integral gain:

A. Suppose that smallest PROPORTIONAL BW setting that causes oscillation was determined to be 2.1 °C.

B. It was then observed that the natural period of this oscillation was 2 minutes.
C. The PROPORTIONAL BW setting should then be set to 4.6 °C (This is calculated from 2.1 °C x 2.2 = 4.6 °C).

D. The INTEGRAL GAIN should be set to 0.27 (This is calculated from 0.54/(2 minutes) = 0.27 repeats per minute).

4.0 Controller Software and RS-232 Communication
The TC-48-20 and TC-48-20 OEM can be controlled through the supplied software operating on a Windows based computer. In addition, see “Serial Communications” for descriptions of the command set for the controller. The command set can be used to create your own custom software using National Instruments LabVIEW, for example, if the supplied software does not quite meet your requirements.

A dedicated serial port is required. See “RS-232 Communications Connections” for proper connection to the serial port of the computer. An optional serial port cable is available and is required to connect to the computer. Contact TE Technology for more information. Always be sure the computer is shut down before connecting or disconnecting the controller from the computer.

Note: If you need to communicate to the controller via a USB port you can use our optional RS232 Adapter for USB to RS232 conversion in conjunction with the optional RS-232 cable. If you use your own USB to RS232 converter, be aware that some converters might “inject” noise on the transmit line from the computer. This will disrupt communication to the controller. This noise problem can be alleviated by adding a 0.001 microfarad, 50 V ceramic capacitor between JP5-7 and JP5-8.

Software Installation: insert the CD into your CD drive in any Windows 2000 (service pack 3) or Windows XP based computer and double-click the setup.exe file (the runtime engine requires a minimum of approximately 320 MB of hard-disk space and 256 MB of RAM). This process will install the National Instruments LabVIEW runtime engine, the TC-48-20.exe file, and various support files to your hard drive. The LabVIEW runtime engine is required since the TC-48-20.exe is actually an executable version of a LabVIEW .vi file. The computer will then ask you to restart. However, you might want to shut down the computer all the way first if you have not connected the controller to the serial port yet. If you have connected it already, then a simple restart will suffice.

To start the software, navigate to the directory in which you installed the TC-48-20.exe file (default location is C:\Program Files\TE Technology\TC-48-20\TC-48-20.exe), then double-click the .exe file. The software will start and you should see the following screen:
The pop-up screen reminds you that you must first establish communication between the controller and the computer. Click the OK button to clear the pop-up screen.

Next, click the COMMUNICATIONS PORT menu key and select the port to which you have the controller connected. Then click the CONNECT button. Controllers with firmware version H or later will display the version on the lower right side of the screen. If earlier than version H this area will be blank.

If you make changes to the controller setting via the keypad, the software will automatically detect this change the next time the software polls the controller.

If you are not able to establish communication with the controller, check the following conditions:

1) Verify the controller itself is on.
2) Make sure you selected the correct serial port and the interface cable is securely connected to the correct port.
3) Verify the cable is wired correctly to the controller.
4) Verify the computer serial port is configured per RS-232 standards.
5) Check that the serial port has not been disabled by your hardware configuration.
The controller software settings are arranged into six sections:

- CONTROL TEMPERATURE
- TEMPERATURE SENSOR
- CONTROLLER OPTIONS
- CONTROL MODE
- ALARMS
- OUTPUT

The options for each section box are revealed when you click the corresponding SELECT button. This opens up a menu box next to the left of the graph box. When you make a change to any of the menu options, the controller is updated immediately. The menu box is closed when you click the OK button on the corresponding section box.
CONTROL TEMPERATURE box

This shows the set temperature for the controller. The menu options allow for adjustment of the set temperature, whether a temperature from the secondary thermistor is displayed, and for adjusting the high and low limits of the set temperature. The values can be changed using the up or down menu buttons or by clicking on the number and typing in the desired value.

The allowable SET TEMPERATURE is limited to the range defined by the HIGH EXTERNAL SET RANGE and the LOW EXTERNAL SET RANGE.

The SET TEMPERATURE 2 DISPLAY can be set to OFF to prevent the display of the temperature of the secondary thermistor, regardless of whether a secondary thermistor is attached to the controller or not. If it is set to AUTOMATIC, then the controller will automatically display the temperature if a sensor is attached, and turn it off if no sensor is attached. Setting it to ON will always display the temperature from the secondary thermistor.

The CONTROL SENSOR OFFSET can be used to correct for known sensor errors or differences between the sensed temperature and the actual temperature.
TEMPERATURE SENSOR box
This shows the present temperature of the control sensor and the secondary sensor.

The menu options allow for selecting which temperature-resistance curve the controller is to reference for reporting the present temperatures of the thermistors. The 15K sensor type should be selected if using the MP-3193, MP-2444, or MP-2542 thermistor.

The 15K sensor provides an effective control range of -20 °C to +100 °C.

The 10K sensor provides for an effective control range of -20 °C to +85 °C. The temperature-resistance curve for the 10K sensor is the same as curve “B” from YSI Temperature, Inc. See “Temperature versus Resistance” below for further details on the 15K and 10K data.

⚠️ If you are using two thermistors, they must have the same resistance versus temperature characteristics. Also be sure that you have selected the correct sensor type. Otherwise a dangerous condition could exist because the actual temperature could be higher or lower than the temperature being interpreted by the controller.
CONTROLLER OPTIONS box
The SAMPLING indicator will flash green each time the software updates the sensor temperatures and power output. The menu options allow for enabling/disabling EEPROM write enable, adjusting the sampling frequency and for determining where to save test data to a file. NOTE: if you use the software with controllers having firmware version G or earlier, the EEPROM WRITE ENABLE button will be disabled and grayed out. This control operates only on firmware versions H and later.

The EEPROM, Electrically Erasable Programmable Read Only Memory, is a non-volatile memory used to store controller settings. This allows the controller to remember its settings even after power to the controller has been turned off. The TC-48-20 and TC-48-20 OEM automatically turn on EEPROM WRITE ENABLE when power is applied to the controller regardless of whether EEPROM WRITE ENABLE was turned off when power to the controller was removed. With EEPROM WRITE ENABLE turned on, any changes to the controller settings are automatically written to EEPROM. With EEPROM WRITE ENABLE turned off, any subsequent changes to the controller settings are only saved in RAM and will not be stored to EEPROM. The maximum number of writes to an EEPROM location is 1,000,000. Even though this provides for many write cycles, you might want to turn EEPROM WRITE ENABLE off if for example you are writing your own code to ramp set points via the computer.

The SAMPLE RATE determines the amount of time the software waits before updating the status of the controller. This is particularly useful if you will be operating controller for a long time and you want to limit the amount of data you save. The minimum time is 1 second, and it can be adjusted in 1 second increments.

To SAVE DATA TO FILE, enter a filename in the text box, including the entire path to the file, such as <C:\PROGRAM FILES\TE TECHNOLOGY\TC-48-20\TESTDATA.TXT>. Alternatively, if you want to append data to an existing file, you can click the folder icon to select an existing file. Then click the SAVE DATA TO FILE button to begin saving test data. If you click the SAVE DATA TO FILE button before entering a filename and path in the text box, an error screen will pop up and a default filename and path will automatically be entered in the text box. Click the continue button on the error pop-up if applicable. The arrow on the button will turn green to indicate that the software is saving test data. The software saves the data into a TAB-delimited format which can then be readily imported into a spreadsheet program for further analysis.
To view the data in Microsoft Excel:
1. Open a blank worksheet
2. Select *Data > Import External Data > Import Data*, and click *Next*
3. Select the file you wish to import and click *Next*
4. Choose to import *Delimited Data Type* and click *Next*
5. Select *TAB as the delimiter* and click *Finish*

Clicking the GO button next to the “DOWNLOAD FACTORY DEFAULTS” label downloads the original default controller settings. You can review these settings by clicking on the INDEX scroll arrows. These default settings cannot be changed.

Alternatively, you can click the GO button next to the “DOWNLOAD CUSTOM DEFAULTS” label to download customized settings from a pre-configured, comma-delimited text file which is saved in the C:\Program Files\TE Technology\TC-48-20\custom settings.csv (unless you changed your default install directory). You can change these settings as needed.

CONTROL MODE box
The menu options provide for adjusting whether the controller is in the heat or cool mode and for adjusting the proportional bandwidth, integral gain and derivative gain.

The COOL or HEAT control mode does not automatically reverse the polarity applied to the TE device. It only defines whether power is increased if the control sensor temperature rises above the set point (COOL mode) or decreases power if the control sensor temperature rises above set point (HEAT mode). The TE device connection to the controller will need to be physically reversed if you initially configure for COOL mode and then decide to switch to HEAT mode, for example.

See the Controller Tuning section for details on the proper settings for the PROPORTIONAL BANDWIDTH, INTEGRAL GAIN, and DERVATIVE GAIN settings.
ALARMS box
The ALARM indicator will be grey if no alarm condition exists. It will flash between yellow and red if an alarm condition exists. The menu provides for adjusting alarm settings.

The ALARM STATUS text box will indicate the nature of the alarm if an alarm conditions exists.

NO LATCHES: if an alarm condition clears itself, the alarm will automatically reset.

ALARM 1 LATCH: if an alarm is triggered from the control sensor, the software will continue to signal an alarm condition until the condition is cleared and the ALARM LACTH CLEAR button is clicked.

ALARM 2 LATCH: if an alarm is triggered from the secondary sensor, the software will continue to signal an alarm condition until the condition is cleared and the ALARM LACTH CLEAR button is clicked.

ALARM 1&2 LATCH: if an alarm is triggered from either the control or the secondary sensor, the software will continue to signal an alarm condition until the condition is cleared and the ALARM LACTH CLEAR button is clicked.

ALARM 1 HIGH SETTING: this sets the temperature at which an alarm will occur if the control sensor temperature exceeds the set value. The set value must be greater than the value set in the ALARM 1 LOW SETTING but less than 200. If the set value is set to greater than 199, no alarm will be signaled for any over-temperature condition.

ALARM 1 LOW SETTING: this sets the temperature at which an alarm will occur if the control sensor temperature becomes less than the set value. The set value must be less than the ALARM 1 HIGH SETTING but greater than -21. If the set value is less than -20, no alarm will be signaled for any under-temperature condition.

ALARM 1 DEADBAND: this defines a temperature difference above or below the ALARM 1 LOW SETTING or ALARM 1 HIGH SETTING at which the alarm status can be cleared (either automatically or manually depending on latch settings). For example, if ALARM 1 HIGH SETTING is set for 70 and the ALARM 1 DEADBAND is set for 10, and an alarm condition occurs, the control sensor would have to cool to 60 °C before the alarm can be reset.
The ALARM 2 HIGH SETTING, ALARM 2 LOW SETTING, and ALARM 2 DEADBAND function in the same manner as described above for ALARM 1 settings except that they are referenced to the secondary sensor.

OUTPUT SHUTDOWN WITH ALARM1: if this option is turned on and an alarm condition occurs relative to the primary sensor, then the controller will shut power off to the TE device. Power will automatically be restored if you have the NO LATCHES option selected. If the ALARM 1 LATCH or the ALARM 1&2 LATCH option is selected, then power will stay off, even if the alarm condition clears itself, until you click the ALARM LATCH CLEAR button.

OUTPUT SHUTDOWN WITH ALARM2: same as the OUTPUT SHUTDOWN WITH ALARM1 except as referenced to the secondary sensor.

OUTPUT box
This shows the percentage of maximum power output that the controller is providing to the TE device.

The output can be turned on and off by clicking the output button either ON or OFF. Whenever a change is made in the software, the controller is updated in real time. However, it might be beneficial to turn off the output first and then make all of your software/controller settings before turning on the output. **Be sure that the output is set to ON prior to shutting down the software though; otherwise, if you attempt to use the controller again without the software, you will not be able to turn the output on.**

The menu provides for adjusting the analog output voltage. The analog output voltage provided by the controller (see “Controller Schematic for further details”) is a 0-5V DC control signal which corresponds to 0 to 100% power output. The ANALOG OUTPUT MULTIPLIER can be set from 0 to 1. When it is set to 1, the analog output voltage can range from 0 to 5 V. If, for example, it is set to 0.5, then analog output voltage can range from 0 to 2.5 V. This can be useful for limiting the output voltage of power supply.
AUTOSCALE VERTICAL AXIS button
Clicking this button automatically scales the graph so that all data plots can be seen. You can also right-click on the axes for further options or enter minimum and maximum Y-axis numbers directly to rescale.
Controller Schematic

JP5-1 CONTROL SENSOR
JP5-2 CONTROL SENSOR
JP5-3 SECONDARY SENSOR
JP5-4 SECONDARY SENSOR

JP5-6 LOGIC SUPPLY +
JP5-7 LOGIC SUPPLY -

JP4-1 V IN, TE
JP4-2 POWER GROUND
JP4-3

JP4-4

JP4-5

JP4-6 POWER GROUND

JP5-8 RS232 RECEIVE (INPUT)
JP5-7 RS232 GND
JP5-9 RS232 TRANSMIT (OUTPUT)

JP5-10 ALARM 1
OPEN DRAIN: 48 V, 1 A MAXIMUM

JP5-11 ALARM 2
OPEN DRAIN: 48 V, 1 A MAXIMUM

JP5-12
0 TO 5 V OUTPUT DRIVE
(0 TO 100%)
UNBUFFERED—REQUIRES EXTERNAL BUFFER

4000 OHMS

POWER

CONTROL
LOGIC

SIGNAL

OUTPUTS

SENSORS

COMMUNICATION

TE DEVICE (LOAD)
(shown in cooling mode)
When one or more external fans are used on the TE device, these should be wired directly to a fixed voltage power supply for constant operation.

When connecting the controller to a TE Technology Thermoelectric Cooling Assembly (TCA) verify that the electrical jumpers (shorts) located on the TCA terminal block are installed/removed per the TCA operating manual before powering the controller.
Controller Hookup Diagram (Two Power Supplies Setup-Option 1)

CONTROLLER DC POWER SUPPLY
≥9 V, <50 V,
150 mA minimum
(+)

TE DEVICE DC POWER SUPPLY
≥0 V, <50 V,
20 A maximum
(-)

TE DEVICE (COOLING MODE CONNECTION SHOWN)
(-) (+)

FUSE

THERMOSTAT AND OTHER PROTECTIVE DEVICES

OPTIONAL SECONDARY THERMISTOR

CONTROL THERMISTOR

TC-48-20
Thermoelectric Temperature Controller
Controller Hookup Diagram (Two Power Supplies Setup-Option 2)

CONTROLLER DC POWER SUPPLY

≥9 V, ≤16 V, 150 mA minimum
output plug: 5.5 mm OD x 2.1 mm ID x 9.5 mm, female
suggested power supply: PS-15-0.4 from
TE Technology, Inc.

TE DEVICE
DC POWER SUPPLY

≥0 V, <50 V,
20 A maximum

TE DEVICE
(COOLING MODE CONNECTION SHOWN)

FERRITE BEAD
FAIR-RITE PN: 0431173951
SUPPLIED WITH PS-15-0.4

FUSE

THERMOSTAT AND OTHER PROTECTIVE DEVICES

JP5
JP3
JP4

OPTIONAL SECONDARY THERMISTOR

CONTROL THERMISTOR

≥9 V, ≤16 V, 150 mA minimum

TE TECHNOLOGY, INC.
TC-48-20
Thermoelectric Temperature Controller

SUPPLIED WITH PS-15-0.4

≥0 V, <50 V,
20 A maximum
Linear Control Hookup Diagram

Note: Check the power supply manual to determine if an external buffer is required between the power supply and the voltage signal output from JP5-12.
Optional External Alarms Setup

Other loads, requiring up to 1 amp of current, can also be controlled.

DC POWER SUPPLY
≥9 V, <50 V, 20 A maximum

- FUSE
- THERMOSTAT AND OTHER PROTECTIVE DEVICES
- LED ALARM INDICATORS
- CURRENT LIMITING RESISTORS
- OPTIONAL SECONDARY THERMISTOR
- CONTROL THERMISTOR
- TE DEVICE (COOLING MODE CONNECTION SHOWN)
- JP4
- JP5

TC-48-20
Thermoelectric Temperature Controller

≥9 V, <50 V, 20 A maximum
Optional Multi-Speed Fan Control Setup

Other loads, requiring up to 1 amp of current, can also be controlled

NOTE: ADJUST ALARM DEADBAND TO PREVENT FAN SPEED FROM RAPIDLY CYCLING.
Note: the RS232 cable is not included as a standard accessory. However, TE Technology can provide this as optional accessory, part number MP-3023. If using the MP-3023, connect the leads as follows:
- red lead to JP5-9
- clear (or white) lead to JP5-8
- black lead to JP5-7

Note: other connections to controller have been removed for the sake of clarity.

Note: If you are using a USB to RS232 converter, some converters might induce electronic noise and interfere with communication. If this occurs, install a 0.001 microfarad, 50V- rated, ceramic capacitor across JP5-7 to JP5-8.

RS232 Communications Parameters:
A. Baud Rate 115,200
B. No Parity
C. 1 Start Bit 1 Stop Bit
NOTE: ALL DIMENSIONS IN MILLIMETERS
NOTE: ALL DIMENSIONS IN MILLIMETERS
Standard Thermistors Available for TC-48-20
Note: All dimensions in millimeters. Standard 15 k-ohms.

MP-3193

MP-2444

MP-2542
Appendix A Temperature versus Resistance Curves
for MP-3193, MP-2444, and MP-2542 Thermistors (15 k-ohm)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>1 46709</td>
</tr>
<tr>
<td>-19</td>
<td>2 44397</td>
</tr>
<tr>
<td>-18</td>
<td>3 42213</td>
</tr>
<tr>
<td>-17</td>
<td>4 40150</td>
</tr>
<tr>
<td>-16</td>
<td>5 38199</td>
</tr>
<tr>
<td>-15</td>
<td>6 36354</td>
</tr>
<tr>
<td>-14</td>
<td>7 34608</td>
</tr>
<tr>
<td>-13</td>
<td>8 32957</td>
</tr>
<tr>
<td>-12</td>
<td>9 31394</td>
</tr>
<tr>
<td>-11</td>
<td>10 29914</td>
</tr>
<tr>
<td>-10</td>
<td>11 28512</td>
</tr>
<tr>
<td>-9</td>
<td>12 27183</td>
</tr>
<tr>
<td>-8</td>
<td>13 25925</td>
</tr>
<tr>
<td>-7</td>
<td>14 24731</td>
</tr>
<tr>
<td>-6</td>
<td>15 23600</td>
</tr>
<tr>
<td>-5</td>
<td>16 22526</td>
</tr>
<tr>
<td>-4</td>
<td>17 21508</td>
</tr>
<tr>
<td>-3</td>
<td>18 20541</td>
</tr>
<tr>
<td>-2</td>
<td>19 19623</td>
</tr>
<tr>
<td>-1</td>
<td>20 18751</td>
</tr>
<tr>
<td>0</td>
<td>21 17923</td>
</tr>
<tr>
<td>1</td>
<td>22 17136</td>
</tr>
<tr>
<td>2</td>
<td>23 16398</td>
</tr>
<tr>
<td>3</td>
<td>24 15676</td>
</tr>
<tr>
<td>4</td>
<td>25 15000</td>
</tr>
<tr>
<td>5</td>
<td>26 14356</td>
</tr>
<tr>
<td>6</td>
<td>27 13744</td>
</tr>
<tr>
<td>7</td>
<td>28 13161</td>
</tr>
<tr>
<td>8</td>
<td>29 12606</td>
</tr>
<tr>
<td>9</td>
<td>30 12078</td>
</tr>
<tr>
<td>10</td>
<td>31 11574</td>
</tr>
<tr>
<td>11</td>
<td>32 11095</td>
</tr>
<tr>
<td>12</td>
<td>33 10637</td>
</tr>
<tr>
<td>13</td>
<td>34 10202</td>
</tr>
<tr>
<td>14</td>
<td>35 9786</td>
</tr>
<tr>
<td>15</td>
<td>36 9389</td>
</tr>
<tr>
<td>16</td>
<td>37 9011</td>
</tr>
<tr>
<td>17</td>
<td>38 8650</td>
</tr>
<tr>
<td>18</td>
<td>39 8306</td>
</tr>
<tr>
<td>19</td>
<td>40 7976</td>
</tr>
<tr>
<td>20</td>
<td>41 7652</td>
</tr>
<tr>
<td>21</td>
<td>42 7382</td>
</tr>
<tr>
<td>22</td>
<td>43 7075</td>
</tr>
<tr>
<td>23</td>
<td>44 6801</td>
</tr>
<tr>
<td>24</td>
<td>45 6539</td>
</tr>
<tr>
<td>25</td>
<td>46 6289</td>
</tr>
<tr>
<td>26</td>
<td>47 6049</td>
</tr>
<tr>
<td>27</td>
<td>48 5820</td>
</tr>
<tr>
<td>28</td>
<td>49 5600</td>
</tr>
<tr>
<td>29</td>
<td>50 5391</td>
</tr>
<tr>
<td>30</td>
<td>51 5190</td>
</tr>
<tr>
<td>31</td>
<td>52 4997</td>
</tr>
<tr>
<td>32</td>
<td>53 4813</td>
</tr>
<tr>
<td>33</td>
<td>54 4637</td>
</tr>
<tr>
<td>34</td>
<td>55 4467</td>
</tr>
<tr>
<td>35</td>
<td>56 4305</td>
</tr>
<tr>
<td>36</td>
<td>57 4150</td>
</tr>
<tr>
<td>37</td>
<td>58 4001</td>
</tr>
<tr>
<td>38</td>
<td>59 3858</td>
</tr>
<tr>
<td>39</td>
<td>60 3721</td>
</tr>
<tr>
<td>40</td>
<td>61 3590</td>
</tr>
<tr>
<td>41</td>
<td>62 3464</td>
</tr>
<tr>
<td>42</td>
<td>63 3343</td>
</tr>
<tr>
<td>43</td>
<td>64 3227</td>
</tr>
<tr>
<td>44</td>
<td>65 3115</td>
</tr>
<tr>
<td>45</td>
<td>66 3008</td>
</tr>
<tr>
<td>46</td>
<td>67 2905</td>
</tr>
<tr>
<td>47</td>
<td>68 2806</td>
</tr>
<tr>
<td>48</td>
<td>69 2711</td>
</tr>
<tr>
<td>49</td>
<td>70 2620</td>
</tr>
<tr>
<td>50</td>
<td>71 2532</td>
</tr>
<tr>
<td>51</td>
<td>72 2448</td>
</tr>
<tr>
<td>52</td>
<td>73 2367</td>
</tr>
<tr>
<td>53</td>
<td>74 2288</td>
</tr>
<tr>
<td>54</td>
<td>75 2213</td>
</tr>
<tr>
<td>55</td>
<td>76 2141</td>
</tr>
<tr>
<td>56</td>
<td>77 2072</td>
</tr>
<tr>
<td>57</td>
<td>78 2005</td>
</tr>
<tr>
<td>58</td>
<td>79 1940</td>
</tr>
<tr>
<td>59</td>
<td>80 1878</td>
</tr>
<tr>
<td>60</td>
<td>81 1818</td>
</tr>
<tr>
<td>61</td>
<td>82 1761</td>
</tr>
<tr>
<td>62</td>
<td>83 1705</td>
</tr>
<tr>
<td>63</td>
<td>84 1652</td>
</tr>
<tr>
<td>64</td>
<td>85 1601</td>
</tr>
<tr>
<td>65</td>
<td>86 1551</td>
</tr>
<tr>
<td>66</td>
<td>87 1503</td>
</tr>
<tr>
<td>67</td>
<td>88 1457</td>
</tr>
<tr>
<td>68</td>
<td>89 1412</td>
</tr>
<tr>
<td>69</td>
<td>90 1369</td>
</tr>
<tr>
<td>70</td>
<td>91 1328</td>
</tr>
<tr>
<td>71</td>
<td>92 1288</td>
</tr>
<tr>
<td>72</td>
<td>93 1250</td>
</tr>
<tr>
<td>73</td>
<td>94 1212</td>
</tr>
<tr>
<td>74</td>
<td>95 1176</td>
</tr>
<tr>
<td>75</td>
<td>96 1142</td>
</tr>
<tr>
<td>76</td>
<td>97 1108</td>
</tr>
<tr>
<td>77</td>
<td>98 1076</td>
</tr>
<tr>
<td>78</td>
<td>99 1045</td>
</tr>
<tr>
<td>79</td>
<td>100 1014</td>
</tr>
<tr>
<td>80</td>
<td>101 983</td>
</tr>
<tr>
<td>81</td>
<td>102 951</td>
</tr>
<tr>
<td>82</td>
<td>103 919</td>
</tr>
<tr>
<td>83</td>
<td>104 878</td>
</tr>
<tr>
<td>84</td>
<td>105 836</td>
</tr>
<tr>
<td>85</td>
<td>106 794</td>
</tr>
<tr>
<td>86</td>
<td>107 752</td>
</tr>
<tr>
<td>87</td>
<td>108 710</td>
</tr>
<tr>
<td>88</td>
<td>109 668</td>
</tr>
<tr>
<td>89</td>
<td>110 626</td>
</tr>
<tr>
<td>90</td>
<td>111 584</td>
</tr>
<tr>
<td>91</td>
<td>112 542</td>
</tr>
<tr>
<td>92</td>
<td>113 500</td>
</tr>
<tr>
<td>93</td>
<td>114 458</td>
</tr>
<tr>
<td>94</td>
<td>115 416</td>
</tr>
<tr>
<td>95</td>
<td>116 374</td>
</tr>
<tr>
<td>96</td>
<td>117 332</td>
</tr>
<tr>
<td>97</td>
<td>118 290</td>
</tr>
<tr>
<td>98</td>
<td>119 248</td>
</tr>
<tr>
<td>99</td>
<td>120 206</td>
</tr>
<tr>
<td>100</td>
<td>121 164</td>
</tr>
</tbody>
</table>

Note: Tolerance for standard thermistors is ±650 Ω, corresponding to ±1 °C over a 0 °C to 100 °C range.

Temperature versus Resistance Curves
for Compatible 10 k-ohm Thermistors

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>2 29500</td>
</tr>
<tr>
<td>-19</td>
<td>3 28060</td>
</tr>
<tr>
<td>-18</td>
<td>4 26690</td>
</tr>
<tr>
<td>-17</td>
<td>5 25400</td>
</tr>
<tr>
<td>-16</td>
<td>6 24170</td>
</tr>
<tr>
<td>-15</td>
<td>7 23020</td>
</tr>
<tr>
<td>-14</td>
<td>8 21920</td>
</tr>
<tr>
<td>-13</td>
<td>9 20880</td>
</tr>
<tr>
<td>-12</td>
<td>10 19900</td>
</tr>
<tr>
<td>-11</td>
<td>11 18970</td>
</tr>
<tr>
<td>-10</td>
<td>12 18090</td>
</tr>
<tr>
<td>-9</td>
<td>13 17260</td>
</tr>
<tr>
<td>-8</td>
<td>14 16470</td>
</tr>
<tr>
<td>-7</td>
<td>15 15710</td>
</tr>
<tr>
<td>-6</td>
<td>16 15000</td>
</tr>
<tr>
<td>-5</td>
<td>17 14330</td>
</tr>
<tr>
<td>-4</td>
<td>18 13880</td>
</tr>
<tr>
<td>-3</td>
<td>19 13070</td>
</tr>
<tr>
<td>-2</td>
<td>20 12500</td>
</tr>
<tr>
<td>-1</td>
<td>21 11940</td>
</tr>
<tr>
<td>0</td>
<td>22 11420</td>
</tr>
<tr>
<td>1</td>
<td>23 10920</td>
</tr>
</tbody>
</table>

47
Appendix B Serial Communications

I. Definitions:

All numeric values are in hexadecimal format. Use lowercase ASCII characters.

Note: where applicable, the base of a number is indicated by its subscript. So, \(20_{10}\) is the number 20 in decimal (base 10) format, and it converts to \(14_{16}\) in hexadecimal (base 16) format.

(stx) Start of text character (*\(^\)\) \(2a_{16}\)
(etx) End of text character (carriage return) or \(0d_{16}\)
(ack) Acknowledge character (*\(^\)\) or \(5e_{16}\)

CC Command characters are ASCII characters from 0 through 9 or a through f.

DDDD This is the ASCII representation of the hexadecimal return or send value. Negative numbers are represented by the hex 2’s complement of the number (16-bit word size):
- 1 decimal = \(0001_{16}\) in hex two’s complement
- -1 decimal = \(ffff_{16}\) in hex two’s complement

SS The 8-bit (modulo 256) checksum of characters sent to/from the controlling computer. This is represented as 2 ASCII hex characters. The checksum calculation excludes the characters (stx), SS, and (etx). TC-48-20 sums (in an 8-bit register) the ASCII values of the characters sent to/from the controlling computer. Any overflow is truncated, leaving the 8-bit (modulo 256) checksum. When the controller is receiving data, this number (as represented by two hex characters) is compared to the two ASCII character hex checksum sent by the controlling computer. The TC-48-20 will respond as shown below depending on whether or not the checksums match. When the controlling computer is receiving data the checksum sent by the controller can be used to make sure the data has not been received with an error. Remember, when finding the ASCII value for a hex number (a, b, c, d, e, and f) be sure to use lower case letters.

To write a command to a controller, the controlling computer must send the following ASCII characters:

(stx)CCDDDDSS(etx)

If the temperature controller receives the command and the checksum is correct, the temperature controller will respond by sending back the “send value” and the checksum of those four ASCII data characters, DDDD:

(stx)DDDDSS(ack)

To query a controller, there is no send value so the controlling computer only needs to send the ASCII command characters with the “D”s filled with zeros:

(stx)CC0000SS(etx)

If the checksum for a query is correct the temperature controller will respond by sending back a “return value” and then SS, which is the checksum of the four return value (DDDD) characters:

(stx)DDDDSS(ack)

If the checksum for a command or query is not correct the temperature controller will respond with four upper case X’s and then 60, which is the checksum of these four X’s:

(stx)XXXX60 (ack)
II. Examples:
A) Send the set temperature of 10.0 to the controller.
 1. The control command, CC, for “DESIRED CONTROL TEMPERATURE (SET TEMPERATURE)” is 1c.
 2. Multiply the desired set-point temperature by 10 (10.0\textsubscript{10} \times 10\textsubscript{10} = 100\textsubscript{10}).
 3. Convert 100 decimal to hexadecimal (64\textsubscript{16}) and add on leading zeros to make the eight-character send value DDDD (0064).
 4. Compute the checksum (SS) by adding the hexadecimal values of the following ASCII characters: 1, c, 0, 0, 6, and 4:

<table>
<thead>
<tr>
<th>ASCII Character</th>
<th>Hexadecimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>c</td>
<td>63</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>Sum</td>
<td>15e\textsubscript{16}</td>
</tr>
</tbody>
</table>

 The 8-bit checksum is the 8 least significant binary bits of the sum, represented as 5e in hexadecimal.

 5. Combining all of these characters in one string we send: (stx)1c00645e(etx).

 6. If the temperature controller receives the command and the checksum is correct, it will send back: (stx)0064ca(ack). If the checksum is not correct the temperature controller will send back: (stx)XXXX60(ack).

B) Send the set temperature of -1.5 °C.
 1. The controller command, CC, is by definition 1c.
 2. Multiply the desired set-point temperature by 10\textsubscript{10} (-1.5 \times 10 = -15).
 3. Convert -15\textsubscript{10} to hexadecimal by taking the two’s complement of the number. (This can be easily done by using the formula $2^n - N$, where \(n\) is the word-bit size and \(N\) is the absolute value of the number being converted.) Hence, you have $2^{16} - 15 = 65521_{10}$. This value then converts to fff\textsubscript{16}.
 4. Compute the checksum (SS) by adding the hexadecimal ASCII values of the following characters: 1, c, f, f, f, 1,:

<table>
<thead>
<tr>
<th>ASCII Character</th>
<th>Hexadecimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>c</td>
<td>63</td>
</tr>
<tr>
<td>f</td>
<td>66</td>
</tr>
<tr>
<td>f</td>
<td>66</td>
</tr>
<tr>
<td>f</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Sum</td>
<td>1f7\textsubscript{16}</td>
</tr>
</tbody>
</table>

 The 8-bit checksum is the 8 least significant binary bits of the sum, represented as f7 in hexadecimal.

 5. Combining all of these characters in one string we send: (stx)1cfff1f7(etx).

 6. If the temperature controller receives the command and the checksum is correct, it will send back: (stx)fff163(ack). If the checksum is not correct the temperature controller will send back: (stx)XXXX60(ack).

C) Read the actual temperature of the control thermistor.
 1. Let us assume the actual temperature is 2.5 °C
 2. The control command, CC, for “CONTROL SENSOR TEMPERATURE” is 01.
 3. There is no send value, so we calculate the checksum (SS) by adding the ASCII values of the characters 0, 1, 0, 0, 0, 0:

<table>
<thead>
<tr>
<th>ASCII Character</th>
<th>Hexadecimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
</tr>
</tbody>
</table>

49
<table>
<thead>
<tr>
<th>0</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Sum \(121_{16}\)

The 8-bit checksum is the 8 least significant binary bits of the sum, represented as 21 in hexadecimal.

4. Combining the characters in one string we send: \((\text{stx})0100021(\text{etx})\).

5. If the temperature controller receives the command and the checksum is correct, it will send back: \((\text{stx})0019\text{ca}(\text{ack})\). The “ca” at the end of the string is the checksum of “0019”. The value \(0019_{16}\) converts to \(25_{10}\). This number, when divided by 10, is 2.5—the temperature in °C. As in the other examples, if the controller did not calculate the correct checksum from the query it would send back: \((\text{stx})\text{XXXX60}(\text{ack})\).
III. RS232 Communications Parameters:
 JP5 PINS 7, 8, and 9

Communications Parameters:
 A. Baud Rate 115,200
 B. No Parity
 C. 1 Start Bit 1 Stop Bit

NOTE if you are using communications software different from the one supplied with the controller: The demands of temperature control require a relatively large portion of the processing power of the onboard microcontroller. It is possible for a host computer to send data too quickly for the controller to receive and update. If communications are disrupted after repeated queries, TE Technology recommends *adding a delay between each command sent to allow the controller sufficient time to process and respond to the query.*

IV. Serial Commands:
1. MODEL CODE
 Write Command: NA
 Read Command: 00
 Interpret: 9613 returned.

2. CONTROL SENSOR TEMPERATURE
 Write Command: NA
 Read Command: 01
 Interpret: Convert returned value to decimal and divide by 10.010 for temperature in °C.

3. POWER OUTPUT
 Write Command: NA
 Read Command: 02
 Interpret: 51110 represent 100% output.
 010 returned is 0% output.

4. SECONDARY SENSOR TEMPERATURE
 Write Command: NA
 Read Command: 04
 Interpret: Convert returned value to decimal and divide by 10.010 for temperature in °C
5. ALARM STATUS
Write Command: NA
Read Command: 03
Interpret:
Convert the hex number to binary and interpret bits as follows:
All zeros==means no alarms.
Bit 0==1 means HIGH ALARM 1.
Bit 1==1 means LOW ALARM 1.
Bit 2==1 means HIGH ALARM 2.
Bit 3==1 means LOW ALARM 2.
Bit 4==1 means OPEN CONTROL SENSOR.
Bit 5==1 means OPEN SECONDARY SENSOR.
Bit 6==1 means a value has changed via keypad entry.
For example, suppose the returned value is 000916. This converts to
0010012, which means that there is a low alarm condition for the
secondary sensor and a high alarm condition for the control sensor.
“Bit 0” is the rightmost bit, or the least significant bit.

6. DESIRED CONTROL TEMPERATURE (SET TEMPERATURE)
Write Command: 1c
Read Command: 50
Interpret:
ASCII characters which represent a hex value in two’s complement form. Convert the two’s complement value to a decimal value and divide by 10.0 to represent the temperature as a degrees decimal value.

7. PROPORTIONAL BANDWIDTH
Write Command: 1d
Read Command: 51
Interpret:
Proportional bandwidth in degrees.
For writing, multiply desired bandwidth by 1010 then convert to hexadecimal. For reading, convert to decimal then divide by 1010
1 degree bandwidth would be 1010.
20 degree bandwidth would be 20010.

8. INTEGRAL GAIN
Write Command: 1e
Read Command: 52
Interpret:
Gain in repeats/minute
For writing, multiply desired integral gain by 10010 then convert to hexadecimal. For reading, convert to decimal then divide by 10010.
0.01 repeats/minute would be 110.
1.00 repeats/minute would be 10010.

9. DERIVATIVE GAIN
Write Command: 1f
Read Command: 53
Interpret:
Gain in minutes.
For writing, multiply desired integral gain by 10010 then convert to hexadecimal. For reading, convert to decimal then divide by 10010.
0.01 minutes would be 110.
1.00 minutes would be 10010.
10. ALARM1 TYPE
 Write Command: 27
 Read Command: 5b
 Interpret:
 0 no load effect.
 1 load off on alarm.

11. ALARM2 TYPE
 Write Command: 2a
 Read Command: 5e
 Interpret:
 0 no load effect
 1 load off on alarm

12. SENSOR CHOICE
 Write Command: 20
 Read Command: 54
 Interpret:
 0 = 15K sensor is selected.
 1 = 10K sensor is selected.

13. CONTROL MODE
 Write Command: 21
 Read Command: 55
 Interpret:
 0 = COOLING mode.
 1 = HEATING mode.

14. LOW SET RANGE
 Write Command: 22
 Read Command: 56
 Interpret:
 This is used to set the lowest temperature that the controller set point can be set to.

15. HIGH SET RANGE
 Write Command: 23
 Read Command: 57
 Interpret:
 This is used to set the highest temperature that the controller set point can be set to.

16. CONTROL SENSOR OFFSET
 Write Command: 24
 Read Command: 58
 Interpret:
 Value to offset control sensor in order to calibrate external sensor if desired.

17. ALARM 1 LOW SETTING
 Write Command: 25
 Read Command: 59
 Interpret:
 Temperature reference to compare against control sensor for high alarm output. Temperatures are in whole degree increments. To turn the low alarm OFF set the alarm temperature to -21_{10} (ffe_{16}).

18. ALARM 1 HIGH SETTING
 Write Command: 26
 Read Command: 5a
 Interpret:
 Temperature reference to compare against control sensor for high alarm output. Temperatures are in whole degree increments. To turn the high alarm OFF set the alarm temperature to 200_{10} ($00c_{16}$).
19. ALARM 2 LOW SETTING
 Write Command: 28
 Read Command: 5c
 Interpret:
 Temperature reference to compare against secondary sensor for high alarm output. Temperatures are in whole degree increments. To turn the low alarm OFF set the alarm temperature to -21 (ffe_{16}).

20. ALARM 2 HIGH SETTING
 Write Command: 29
 Read Command: 5d
 Interpret:
 Temperature reference to compare against secondary sensor for high alarm output. Temperatures are in whole degree increments. To turn the high alarm OFF set the alarm temperature to 200 (00c8_{16}).

21. ALARM LATCH FUNCTION
 Write Command: 2b
 Read Command: 5f
 Interpret:
 0 = NO LATCHES
 1 = ALARM 1 LATCH
 2 = ALARM 2 LATCH
 3 = ALARM 1&2 LATCH

22. TEMPERATURE 2 DISPLAY
 Write Command: 2c
 Read Command: 60
 Interpret:
 0 = OFF
 1 = AUTOMATIC
 2 = ON

23. ALARM 1 DEADBAND
 Write Command: 2d
 Read Command: 61
 Interpret:
 The span in temperature that the control sensor must move before the ALARM 1 output is toggled off. For writing, multiply desired deadband by 10^10 then convert to hexadecimal. For reading, convert to decimal then divide by 10^10.
 1 degree would be 10_{10}
 20 degrees would be 200_{10}

24. ALARM 2 DEADBAND
 Write Command: 2e
 Read Command: 62
 Interpret:
 The span in temperature that the secondary sensor must move before the ALARM 2 output is toggled off. For writing, multiply desired deadband by 10^10 then convert to hexadecimal. For reading, convert to decimal then divide by 10^10.
 1 degree would be 10 decimal
 20 degrees would be 200 decimal
25. ANALOG OUTPUT MULTIPLIER
 Write Command: 2f
 Read Command: 63
 Interpret: For writing, multiply desired analog output multiplier by 100\(_{10}\) then convert to hexadecimal. For reading, convert to decimal then divide by 100\(_{10}\). Allowable range is 0 to 1.00\(_{10}\). 1.00 multiplier is a value of 100\(_{10}\), 0.50 multiplier is a value of 50\(_{10}\), 0.00 multiplier is a value of 0

26. LATCH CLEAR
 Write Command: 33
 Read Command: NA
 Interpret: Send this command to reset alarm latches.

27. OUTPUT ENABLE
 Write Command: 30
 Read Command: 64
 Interpret: 0 = OFF
 1 = ON

28. EEPROM WRITE ENABLE
 Write Command: 31
 Read Command: 65
 Interpret: 0 = OFF
 1 = ON
 NOTE: this command valid only for firmware versions H and higher. EEPROM WRITE ENABLE is automatically turned “ON” whenever the controller is turned on. Note: for the TC-48-20 only, regardless of the EEPROM WRITE ENABLE setting, changes made to parameters via keypad are automatically stored in the EEPROM. This feature can not be turned off.

27. REVISION LEVEL
 Write Command: NA
 Read Command: 05
 Interpret: 08 = H
 09 = I
 10 = J
 11 = K
 12 = L
 13 = M
 14 = N
 15 = O
 16 = P
 17 = Q
 18 = R
 19 = S
 20 = T
 21 = U
 22 = V
 23 = W
 24 = X
 25 = Y
 26 = Z
V. ASCII Reference Table

<table>
<thead>
<tr>
<th>Dec</th>
<th>Oct</th>
<th>Hex</th>
<th>Binary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>000</td>
<td>00</td>
<td>^@ ^`</td>
<td>NULL NULL null c-@ c-`</td>
</tr>
<tr>
<td>01</td>
<td>001</td>
<td>01</td>
<td>^A ^a</td>
<td>SOH GTL c-A c-a start-of-heading</td>
</tr>
<tr>
<td>02</td>
<td>002</td>
<td>02</td>
<td>^B ^b</td>
<td>STX c-B c-b start-of-text</td>
</tr>
<tr>
<td>03</td>
<td>003</td>
<td>03</td>
<td>^C ^c</td>
<td>ETX c-C c-c end-of-text</td>
</tr>
<tr>
<td>04</td>
<td>004</td>
<td>04</td>
<td>^D ^d</td>
<td>EOT SDC end-of-transmission c-D c-d ...</td>
</tr>
<tr>
<td>05</td>
<td>005</td>
<td>05</td>
<td>^E ^e</td>
<td>ENQ PPC c-E c-e enquiry</td>
</tr>
<tr>
<td>06</td>
<td>006</td>
<td>06</td>
<td>^F ^f</td>
<td>ACK c-F c-f acknowledge</td>
</tr>
<tr>
<td>07</td>
<td>007</td>
<td>07</td>
<td>^G ^g</td>
<td>BELL BEL bell c-G c-g \a</td>
</tr>
<tr>
<td>08</td>
<td>010</td>
<td>08</td>
<td>^H ^h</td>
<td>BS GET backspace c-H c-h \b</td>
</tr>
<tr>
<td>09</td>
<td>011</td>
<td>09</td>
<td>^I ^i</td>
<td>\TAB TCT HT tab c-I c-i \t</td>
</tr>
<tr>
<td>10</td>
<td>012</td>
<td>0A</td>
<td>^J ^j</td>
<td>LF linefeed c-J c-j \n</td>
</tr>
<tr>
<td>11</td>
<td>013</td>
<td>0B</td>
<td>^K ^k</td>
<td>VT \vertical-tab c-K c-k \v</td>
</tr>
<tr>
<td>12</td>
<td>014</td>
<td>0C</td>
<td>^L ^l</td>
<td>FF formfeed page c-L c-l</td>
</tr>
<tr>
<td>13</td>
<td>015</td>
<td>0D</td>
<td>^M ^m</td>
<td>CR carriage-return c-M c-m \r</td>
</tr>
<tr>
<td>14</td>
<td>016</td>
<td>0E</td>
<td>^N ^n</td>
<td>SO c-N c-n shift-out</td>
</tr>
<tr>
<td>15</td>
<td>017</td>
<td>0F</td>
<td>^O ^o</td>
<td>SI c-O c-o shift-in</td>
</tr>
<tr>
<td>16</td>
<td>020</td>
<td>10</td>
<td>^P ^p</td>
<td>data-link-escape c-P c-p</td>
</tr>
<tr>
<td>17</td>
<td>021</td>
<td>11</td>
<td>^Q ^q</td>
<td>DC1 LLO go XON xon c-Q c-Q</td>
</tr>
<tr>
<td>18</td>
<td>022</td>
<td>12</td>
<td>^R ^r</td>
<td>DC2 c-R c-r</td>
</tr>
<tr>
<td>19</td>
<td>023</td>
<td>13</td>
<td>^S ^s</td>
<td>DC3 stop XOFF xoff c-S c-s</td>
</tr>
<tr>
<td>20</td>
<td>024</td>
<td>14</td>
<td>^T ^t</td>
<td>DCL c-T c-t</td>
</tr>
<tr>
<td>21</td>
<td>025</td>
<td>15</td>
<td>^U ^u</td>
<td>NAK PPU negative-acknowledge c-U c-u</td>
</tr>
<tr>
<td>22</td>
<td>026</td>
<td>16</td>
<td>^V ^v</td>
<td>SYN c-V c-v synchronous-idle</td>
</tr>
<tr>
<td>23</td>
<td>027</td>
<td>17</td>
<td>^W ^w</td>
<td>ETB end-of-transmission-block c-W c-w</td>
</tr>
<tr>
<td>24</td>
<td>030</td>
<td>18</td>
<td>^X ^x</td>
<td>CAN SPE c-X c-x cancel</td>
</tr>
<tr>
<td>25</td>
<td>031</td>
<td>19</td>
<td>^Y ^y</td>
<td>SPD c-Y c-y end-of-medium</td>
</tr>
<tr>
<td>26</td>
<td>032</td>
<td>1A</td>
<td>^Z ^z</td>
<td>SUB suspend c-Z c-z substitute</td>
</tr>
<tr>
<td>27</td>
<td>033</td>
<td>1B</td>
<td>^[^[</td>
<td>escape c-[c-[m-</td>
</tr>
<tr>
<td>28</td>
<td>034</td>
<td>1C</td>
<td>^\ ^\</td>
<td>field-separator c-\ c-\</td>
</tr>
<tr>
<td>29</td>
<td>035</td>
<td>1D</td>
<td>^^ ^^</td>
<td>group-separator</td>
</tr>
<tr>
<td>30</td>
<td>036</td>
<td>1E</td>
<td>^^ ^~</td>
<td>record-separator c-^^ c-~</td>
</tr>
<tr>
<td>31</td>
<td>037</td>
<td>1F</td>
<td>^<code> ^</code></td>
<td>unit-separator US c_- c-DEL</td>
</tr>
</tbody>
</table>

32	040	20	SPC space spc
33	041	21	! exclamation-point
34	042	22	" straight-double-quototation-mark
35	043	23	# number-sign
36	044	24	$ @ @ dollar-sign
37	045	25	% percent-sign
38	046	26	& ampersand
39	047	27	' apostrophe
40	050	28	(left-parenthesis
41	051	29) right-parenthesis
42	052	2A	* asterisk star
43	053	2B	+ addition-sign
44	054	2C	, comma
45	055	2D	- subtraction-sign minus hyphen negative dash
46	056	2E	. period dot decimal
47	057	2F	/ right-slash
48	060	30	0
49	061	31	1