• Exceptional capacity in a small size.
• Fan speed can be externally controlled to reduce fan noise in low heat load conditions. (Requires TC-720 temperature controller, sold separately).
• Versatile mounting options.
• Useful for medium heat loads in medical products, laser diode coolers, laboratory instruments, etc.
• Provides effective direct-contact cooling which is ideal for precision temperature control.
• Threaded holes are located in the cold plate for easy attachment of a temperature sensor, interface plates, and other cooled plates.
• Can cool to -20 °C (no load) as well as heat to 100 °C. Heating and cooling can be automatically managed with a bipolar / heat & cool temperature controller.
• CE marked, RoHS compliant.
CP-130HT Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoelectric (TE) Power (typical)(^1)</td>
<td>24 VDC at 8.1 A</td>
</tr>
<tr>
<td>Thermoelectric (TE) Power (maximum)(^2)</td>
<td>24 VDC at 10.5 A</td>
</tr>
<tr>
<td>External (ambient) Fan Power</td>
<td>24 VDC at 0.21 A</td>
</tr>
<tr>
<td>External (ambient) Fan Noise</td>
<td>43 dBA</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>1.56</td>
</tr>
<tr>
<td>NEMA Rating</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^1\)Current, at steady state, is rated at +25 °C ambient, +25 °C cold plate, maximum heat removal. At -19.8 °C cold plate, the typical steady-state current is 7.7 A.

\(^2\)Current, at steady-state operation under worst case conditions, is rated at -20 °C ambient, +100 °C cold plate, maximum heat removal.

Please review the Thermoelectric Cooling Assembly (TCA) Instruction Manual (or manual in other languages), ordering information, and FAQ’s for related technical information before purchasing or using this product.

Performance is based on unrestricted air flow to fan and from air-flow outlets. Do not operate if the ambient exceeds 70 °C, or if the heat sink or cold-plate temperature exceeds 100 °C. Do not operate at air temperatures below -20 °C.

Diagram:

- 4X M5 x 0.8 THREADING TAPPED 9.7 DEEP
- AMBIENT-SIDE AIR FLOW OUTLET
- 4X M4 x 0.7 THREADING TAPPED 8.9 DEEP
- AMBIENT-SIDE AIR FLOW INLET
- 25 DEEP HOLE with M3 x 0.5 THREADING TAPPED 9.6 DEEP for SENSOR MOUNTING
- 4X M4 x 0.7 TAPPED 9.6 DEEP
- AMBIENT-SIDE AIR FLOW OUTLET
- 2X M3 x 0.5 TAPPED THROUGH 3 FINS for THERMOSTAT MOUNTING

TE TECHNOLOGY, INC.

https://tetech.com/ • cool@tetech.com • 231-929-3966 • 1590 Keane Drive • Traverse City, MI 49696

NOTE: All specifications are subject to change without notice. © 2020 TE Technology, Inc.
3. Determine Cooling Capacity

The maximum amount of heat that the cooler can remove is determined by the intersection point (determined in the previous step). The cooler will be able to maintain the desired plate temperature if the cooling capacity exceeds the heat load. If the heat load exceeds the cooling capacity then a higher capacity cooler will be needed.

Example: You need to maintain the cold plate at 15 °C while in a 25 °C ambient. The cooler can remove a maximum of approximately 100 W of heat from the cold plate. If the heat load (actively generated heat plus the heat gain through insulation, solar, vapor condensation, etc.) in the system exceeds this, you would need more coolers and/or a larger cooler.
Example: You need to maintain the water at 30 °C while in a -10 °C ambient. The cooler can add a maximum of approximately 240 W of heat to the water. If the heat dissipation from the system exceeds this, you would need more coolers and/or a larger cooler.
The external fan speed can be optionally controlled using pulse width modulation at a recommended 5 kHz to 25 kHz frequency applied at terminal position 4 (SPD CTRL, brown wire). The TC-720 temperature controller can be used to provide this PWM signal to reduce the audible noise at low cooling demands (use 5400Hz frequency setting). Electrical ground to terminal position 4 will reduce fan speed.

Terminal position 3 provides for a fan-speed sensor, sending two pulses per revolution. Consult with TE Technology if you wish to use this feature.

Reducing the fan speed will result in a loss of cooling performance and an increase in the heat sink operating temperature.

NOTE: Do not apply solder (tin) to the ends of the wires before inserting them into the connector. This will generate excessive heat at the terminal resulting in latent failures. Use copper wire only.
Terminal Block Configuration for Continuous Operation at Full Power

As-Shipped Configuration 1 of 2

1

ELECTRICAL JUMPERS, SHOWN IN ORANGE, INSTALLED (ORIGINAL CONFIGURATION)

2

LOOSEN SCREW BUT DO NOT REMOVE

LOOSEN SCREW BUT DO NOT REMOVE
Terminal Block Configuration for Continuous Operation at Full Power

As-Shipped Configuration 2 of 2

3

External (ambient) Fan Power (+)
Thermoelectric (TE) Device (+)
Thermoelectric (TE) Device (-)
External (ambient) Fan Power (-)

Power supply (+) Red Wire to POSITION 6
Power supply (-) Black Wire to POSITION 1

4

STRIP WIRE ENDS 5.5 mm, INSTALL WIRES (22-12 AWG), TIGHTEN SCREWS TO 0.56 N-m (5 lbs-in)

NOTE: Do not apply solder (tin) to the ends of the wires before inserting them into the connector. This will generate excessive heat at the terminal resulting in latent failures. Use copper wire only.

NOTE: All specifications are subject to change without notice.

© 2020 TE Technology, Inc.
1. REMOVE TWO ELECTRICAL JUMPERS FROM 2-3 AND 4-5.

2. LOOSEN SCREWS BUT DO NOT REMOVE.

REMOVE TWO ELECTRICAL JUMPERS FROM 2-3 AND 4-5.
Terminal Block Configuration for Operation with Temperature Controller

3

- External (ambient) Fan Power (+)
- Thermoelectric (TE) Device (+)
- Thermoelectric (TE) Device (-)
- External (ambient) Fan Power (-)
- Power supply (+) Red Wire to POSITION 6
- Temperature Controller (+) Red Wire to POSITION 4
- Temperature Controller (-) Black Wire to POSITION 3
- Power supply (-) Black Wire to POSITION 1

4

- STRIP WIRE ENDS 5.5 mm, INSTALL WIRES (22-12 AWG), TIGHTEN SCREWS TO 0.56 N-m (5 lbs-in)
- NOTE: Do not apply solder (tin) to the ends of the wires before inserting them into the connector. This will generate excessive heat at the terminal resulting in latent failures. Use copper wire only.